-
Câu hỏi:
Tìm giá trị cực tiểu của hàm số \(y = \frac{{{x^2} + 3}}{{x + 1}}\)
- A. 1
- B. 2
- C. -3
- D. -6
Đáp án đúng: B
Hàm số có tập xác định \(D = \mathbb{R}\backslash \left\{ { - 1} \right\} \Rightarrow y' = \frac{{{x^2} + 2x - 3}}{{{{\left( {x + 1} \right)}^2}}} \Rightarrow y' = 0\)
\( \Leftrightarrow {x^2} + 2x - 3 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = - 3}\end{array}} \right.\)
Mặt khác \(y = \frac{8}{{{{\left( {x + 1} \right)}^3}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}
{y\left( 1 \right) = 1 > 0}\\
{y\left( { - 3} \right) = - 1 < 0}
\end{array}} \right. \Rightarrow {y_{CT}} = y\left( 1 \right) = 2\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ CỰC TRỊ CỦA HÀM SỐ
- Cho hàm số y = frac{{x + 1}}{{x - 1}}. Khẳng định nào sau đây là đúng?
- Tìm tọa độ điểm cực đại của đồ thị hàm số y = {x^4} - 2{{ m{x}}^2} + 1.
- Hàm số fleft( x ight) = a{x^3} + b{x^2} + cx + d đạt cực tiểu tại điểm x = 0,fleft( 0 ight) = 0
- Tìm các giá trị của m để hàm số y = {x^3} - 3m{{ m{x}}^2} + 4{m^3}) có cực đại và cực tiểu đồng thời tổng các cự
- Đồ thị hàm số nào sau đây có một điểm cực tiểu?
- Cho hàm số y = x - sin 2{ m{x}} + 1. Mệnh đề nào sau đây đúng?
- Cho hàm số y = frac{1}{3}{x^3} - left( {m - 1} ight){x^2} + left( {{m^2} - 3m + 2} ight)x - m đạt cực tiểu tại x = 0.
- Cho hàm số y=f(x) xác định, liên tục trên đoạn [−3;3] và có đồ thị đường cong ở hình vẽ bên.
- Hàm số y=f(x) xác định, liên tục trên R và đạo hàm f′(x)=2(x−1)^2(2x+6)
- Với giá trị nào của tham số m thì đồ thị hàm số y=x^4−2(m−1)x^2+m4−3m^2+2017 có ba điểm cực trị tạo thành một tam giác có diện tích bằng 32?