YOMEDIA
NONE
  • Câu hỏi:

    Giá trị lớn nhất của hàm số \(y = {e^x}\) trên đoạn \(\left[ {0;\frac{\pi }{2}} \right]\) là:

    • A. \(\frac{{\sqrt 2 }}{2}{e^{\frac{\pi }{4}}}.\) 
    • B. \(\frac{{\sqrt 3 }}{2}{e^{\frac{\pi }{6}}}.\)  
    • C. 1
    • D. \(\frac{1}{2}{e^{\frac{\pi }{3}}}.\)

    Đáp án đúng: A

    Ta có: \(y' = \left( {{e^x}\cos x} \right)' = {e^x}\left( {\cos x - \sin x} \right) \Rightarrow y' = 0 \Leftrightarrow {e^x}\left( {\sin x - \cos x} \right) = 0 \Leftrightarrow x = \frac{\pi }{4}.\)

    Suy ra: \(\left\{ \begin{array}{l}y\left( 0 \right) = 1\\y\left( {\frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}{e^{\frac{\pi }{4}}}\\y\left( {\frac{\pi }{2}} \right) = 0\end{array} \right. \Rightarrow \mathop {\max }\limits_{\left[ {0;\frac{\pi }{2}} \right]} y = y\left( {\frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}{e^{\frac{\pi }{4}}}.\)

    YOMEDIA
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC VỀ GIÁ TRỊ LỚN NHẤT VÀ NHỎ NHẤT CỦA HÀM SỐ

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON