YOMEDIA
NONE
  • Câu hỏi:

    Biết đồ thị hàm số \(y = f\left( x \right)\) đối xứng với đồ thị hàm số \(y = {\log _a}x\left( {0 < a \ne 1} \right)\). Qua điểm \(I\left( {2;2} \right)\). Tính \(f\left( {4 - {a^{2018}}} \right)\). 

    • A. -2020  
    • B. 2014 
    • C. -2014 
    • D. 2020 

    Lời giải tham khảo:

    Đáp án đúng: C

    Đồ thị hàm số \(y = f\left( x \right)\)đối xứng với đồ thị hàm số \(y = {\log _a}x\left( {0 < a \ne 1} \right)\) qua điểm \(I\left( {2;2} \right)\)

    Gọi \(A\left( {x;y} \right)\) là điểm thuộc đồ thị hàm số  và điểm đối xứng của nó qua  là \(B\left( {x';y'} \right)\)

    Nên \(\left\{ \begin{array}{l}x + x' = 4\\y + y' = 4\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x + x' = 4\\f\left( x \right) + {\log _a}x' = 4\end{array} \right.\)

    \( \Rightarrow \left\{ \begin{array}{l}x' = 4 - x\\f\left( x \right) + {\log _a}\left( {4 - x} \right) = 4\end{array} \right.\)

    Khi đó \(f\left( {4 - {a^{2018}}} \right) + {\log _a}\left( {4 - \left( {4 - {a^{2018}}} \right)} \right) = 4\)

    \(\begin{array}{l} \Rightarrow f\left( {4 - {a^{2018}}} \right) + 2018 = 4\\ \Rightarrow f\left( {4 - {a^{2018}}} \right) =  - 2014\end{array}\)

    Chọn C.

    ATNETWORK

Mã câu hỏi: 352974

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
NONE
ON