YOMEDIA
NONE
  • Câu hỏi:

    Tổng các nghiệm của phương trình \(\sin \left( {\frac{{5\pi }}{4} - 6{\rm{x}}} \right) + 15\sin \left( {\frac{\pi }{4} + 2{\rm{x}}} \right) = 16\) trên đoạn \(\left[ { - 2019;2019} \right]\) bằng 

    • A. \(\frac{{1282\pi }}{8}\)   
    • B. \(\frac{{1285\pi }}{8}\) 
    • C. \(\frac{{1283\pi }}{8}\) 
    • D. \(\frac{{1284\pi }}{8}\) 

    Lời giải tham khảo:

    Đáp án đúng: B

    Ta có \(\sin \left( {\frac{{5\pi }}{4} - 6x} \right) + 15\sin \left( {\frac{\pi }{4} + 2x} \right) = 16\)

    Mà \(\left\{ \begin{array}{l}\sin \left( {\frac{{5\pi }}{4} - 6x} \right) \le 1\\15\sin \left( {\frac{\pi }{4} + 2x} \right) \le 15\end{array} \right. \Rightarrow \sin \left( {\frac{{5\pi }}{4} - 6x} \right) + 15\sin \left( {\frac{\pi }{4} + 2x} \right) \le 16\)

    Dấu bằng xảy ra khi \(\left\{ \begin{array}{l}\sin \left( {\frac{{5\pi }}{4} - 6x} \right) = 1\\\sin \left( {\frac{\pi }{4} + 2x} \right) = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{{5\pi }}{4} - 6x = \frac{\pi }{2} + k2\pi \\\frac{\pi }{4} + 2x = \frac{\pi }{2} + k'2\pi \end{array} \right.\)

    \( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{\pi }{8} - \frac{{k\pi }}{3}\\x = \frac{\pi }{8} + k'\pi \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k =  - 3k'\\x = \frac{\pi }{8} + k'\pi \end{array} \right.;x \in \left[ { - 2019;2019} \right]\)

    \( \Rightarrow k' \in \left[ { - 642;642} \right] \Rightarrow \) có 1285 nghiệm

    Khi đó tổng các nghiệm của phương trình là \(\frac{{1285\pi }}{8}\)

    Chọn B.

    ATNETWORK

Mã câu hỏi: 353031

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
NONE
ON