-
Câu hỏi:
Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng \(\left( { - 2019;2020} \right)\) để hàm số \(y = 2{{\rm{x}}^3} - 3\left( {2m + 1} \right){x^2} + 6m\left( {m + 1} \right) + 2019\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\)?
- A. 2021
- B. 2020
- C. 2018
- D. 2019
Lời giải tham khảo:
Đáp án đúng: D
Ta có hàm số \(y = 2{x^3} - 3\left( {2m + 1} \right){x^2} + 6m\left( {m + 1} \right)x + 2019\) có:
\(\begin{array}{l}y' = 6{x^2} - 6\left( {2m + 1} \right)x + 6m\left( {m + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = m\\x = m + 1\end{array} \right.\end{array}\)
Bảng biến thiên:
Hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\) khi \(m + 1 \ge 2 \Rightarrow 1 \le m < 2020 \Rightarrow \) có 2019 giá trị nguyên của m thỏa mãn bài toán.
Chọn D.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\): \({x^2} + {y^2} + {z^2} - 4{\rm{x}} - 2y + 2{\rm{z}} - 19 = 0\) và mặt phẳng \(\left( P \right):2y - y - 2{\rm{z}} + m + 3 = 0\) với m là tham số. Gọi T là tập tất cả các giá trị thực của tham số m để mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi bằng \(6\pi \). Tổng giá trị của tất cả các phần tử thuộc T bằng
- Đường thẳng \({\rm{x}} = 1\) là tiệm cận đứng của đồ thị hàm số nào dưới đây?
- Hàm số \(y = {3^{{x^2} + 2}}\) có đạo hàm là
- Một lớp học có 38 học sinh. Hỏi có bao nhiêu cách chọn ngẫu nhiên hai bạn học sinh trong lớp?
- Cho hàm số \(f\left( x \right) = \ln \frac{{x + 1}}{{x + 4}}\). Tính giá trị biểu thức \(P = f'\left( 0 \right) + f'\left( 3 \right) + f'\left( 6 \right) + ... + f'\left( {2019} \right)\).
- Số nghiệm nguyên của bất phương trình \({\log _{\frac{1}{3}}}\left( {x - 1} \right) > - 3\) là
- Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng \(\left( { - 2019;2020} \right)\) để hàm số \(y = 2{{\rm{x}}^3} - 3\left( {2m + 1} \right){x^2} + 6m\left( {m + 1} \right) + 2019\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\)?
- Trong không gian \({\rm{Oxyz}}\), cho điểm \(A\left( {2; - 1; - 3} \right)\) và mặt phẳng \(\left( P \right):3{\rm{x}} - 2y + 4{\rm{z}} - 5 = 0\). Mặt phẳng \(\left( Q \right)\) đi qua A và song song với mặt phẳng \(\left( P \right)\) có phương trình là
- Cho tứ diện ABCD, trên các cạnh là BC, BD, AC lần lượt lấy các điểm M, N, P sao cho \(BC = 3BM,BD = \frac{3}{2}BN,\) \(AC = 2AP\).
- Tính diện tích của mặt cầu ngoại tiếp hình lăng trụ tam giác đều có tất cả các cạnh bằng a
- Hãy cho biết hình lập phương có bao nhiêu mặt phẳng đối xứng?
- Cho hàm số \(f\left( x \right)\) biết \(f\left( 0 \right) = 1\). \(f'\left( x \right)\) liên tục trên \(\left[ {0;3} \right]\) và \(\int\limits_0^3 {f'\left( x \right)d{\rm{x}}} = 9\). Tính \(f\left( 3 \right)\).
- Cho hàm số \(y = {x^3} - 2\left( {m - 1} \right){x^2} + 2\left( {{m^2} - 2m} \right)x + 4{m^2}\) có đồ thị \(\left( C \right)\) và đường thẳng \(d:y = 4{\rm{x}} + 8\). Đường thẳng \({\rm{d}}\) cắt đồ thị \(\left( C \right)\) tại 3 điểm phân biệt có hoành độ \({{\rm{x}}_1},{x_2},{x_3}\). Tìm giá trị lớn nhất của biểu thức \(P = x_1^3 + x_2^3 + x_3^3\).
- Cho hai số thực x, y thỏa mãn : \({\log _4}\left( {x + y} \right) + {\log _4}\left( {x - y} \right) \ge 1\). Tìm giá trị nhỏ nhất của biểu thức \(P = 2{\rm{x}} - y\)
- Trong không gian \({\rm{Ox}}yz\), cho ba điểm \(A\left( {0;1; - 2} \right)\), \(B\left( {3;1;1} \right)\), \(C\left( { - 2;0;3} \right)\). Mặt phẳng \(\left( {ABC} \right)\) đi qua điểm nào sau đây?
- Biết đồ thị hàm số \(y = f\left( x \right)\) đối xứng với đồ thị hàm số \(y = {\log _a}x\left( {0 < a \ne 1} \right)\). Qua điểm \(I\left( {2;2} \right)\). Tính \(f\left( {4 - {a^{2018}}} \right)\).
- Cho hàm số \(y = \frac{{{x^3}}}{3} - 2{{\rm{x}}^2} + 3x + 1\) có đồ thị (C). có bao nhiêu tiếp tuyến của (C) song song với đường thẳng \(y = 3{\rm{x}} + 1\)?
- Trong không gian \({\rm{Ox}}yz\), cho mặt cầu \(\left( S \right):{x^2} + y^2 + {z^2} - 2{\rm{x}} + 2y - 4{\rm{z}} - 3 = 0\). Bán kính R của mặt cầu \(\left( S \right)\) bằng
- Cho cấp số cộng \(\left( {{u_n}} \right)\) biết \({u_n} = 2 - 3n\). Công sai d của cấp số cộng là
- Tính chiều cao của khối lăng trụ tam giác đều biết thể tích bằng \(\frac{{{a^3}\sqrt 3 }}{2}\), cạnh đáy bằng a.
- Một khối nón có thể tích bằng \(9{{\rm{a}}^3}\pi \sqrt 2 \). Tính bán kính R đáy khối nón khi diện tích xung quanh nhỏ nhất.
- Gọi m là giá trị nhỏ nhất của hàm số \(y = x - 1 + \frac{4}{{x - 1}}\) trên khoảng \(\left( {1; + \infty } \right)\). Tìm m?
- Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, AC=a, cạnh SA vuông góc với mặt phẳng (ABCD) và SA=a. Tính thể tích V của khối chóp S.ABCD.
- Trong không gian \({\rm{Ox}}yz\), cho hai điểm \(A\left( {1; - 1; - 3} \right)\), \(B\left( { - 2;2;1} \right)\). Vectơ \(\overrightarrow {AB} \) có tọa độ là
- Cho khối chóp S.ABC, mặt bên SBC là tam giác vuông cân tại S có BC=2a, cạnh \({\rm{S}}A = a\sqrt 2 \) và tạo với mặt phẳng \(\left( {SBC} \right)\) một góc \(30^\circ \). Tính thể tích của khối chóp S.ABC.
- Tập nghiệm của phương trình \({2^{{x^2} - 3{\rm{x}}}} = \frac{1}{4}\) là
- Cho hình nón có độ dài đường sinh \(l = 4{\rm{a}}\), bán kính đáy \({\rm{R}} = a\sqrt 3 \). Diện tích xung quanh hình nón bằng
- Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2{\rm{x}} - y + 3 = 0\). Một vectơ pháp tuyến của \(\left( P \right)\) có tọa độ là
- Cho hình trụ có trục \(OO'\), chiều cao bằng a. Trên hai đường tròn đáy \(\left( O \right)\) và \(\left( {O'} \right)\) lần lượt lấy hai điểm A, B sao cho khoảng cách giữa hai đường thẳng AB và OO’ bằng \(\frac{a}{2}\). Góc giữa hai đường thẳng AB và OO’ bằng \(60^\circ \). Tính thể tích của khối trụ đã cho.
- Cho hình hộp \(ABC{\rm{D}}.A'B'C'D'\) có đáy \(ABC{\rm{D}}\) là hình chữ nhật với \(AB = a,A{\rm{D}} = {\rm{a}}\sqrt 3 \). Hình chiếu vuông góc của \(A'\) lên \(\left( {ABC{\rm{D}}} \right)\) trùng với giao điểm của AC và BD. Tính khoảng cách từ B’ đến mặt phẳng \(\left( {A'B{\rm{D}}} \right)\).
- Cho hàm số \(y = f\left( x \right)\) xác định và có đạo hàm cấp một và cấp hai trên khoảng \(\left( {a;b} \right)\) và \({{\rm{x}}_0} \in \left( {a;b} \right)\). Khẳng định nào sau đây sai?
- Tìm hệ số của số hạng chứa \({{\rm{x}}^{26}}\) trong khai triển nhị thức Newton của \({\left( {\frac{1}{{{x^4}}} - 2{{\rm{x}}^7}} \right)^n}\) biết rằng: \(C_{2n + 1}^{n + 1} + C_{2n + 1}^{n + 2} + ... + C_{2n + 1}^{2n} = {2^{20}} - 1\) (n nguyên dương).
- Cho hàm số \(f\left( x \right)\) đồng biến và có đạo hàm cấp hai trên đoạn \(\left[ {0;2} \right]\) và thỏa mãn \(2{\left[ {f\left( x \right)} \right]^2} - f\left( x \right)f''\left( x \right) + {\left[ {f'\left( x \right)} \right]^2} = 0\) với \(\forall x \in \left[ {0;2} \right]\). Biết \(f\left( 0 \right) = 1,f\left( 2 \right) = {e^6}\), tính tích phân \(I = \int\limits_{ - 2}^0 {\left( {2{\rm{x}} + 1} \right)f\left( x \right)d{\rm{x}}} \) bằng
- Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và \({\rm{SA}} \bot \left( {ABC{\rm{D}}} \right)\). Biết \({\rm{S}}A = \frac{{a\sqrt 6 }}{3}\). Tính góc giữa SC và mặt phẳng \(\left( {ABC{\rm{D}}} \right)\).
- Trong không gian Oxyz cho 3 điểm \(A\left( {1; - 1;3} \right),B\left( {2;1;0} \right),C\left( { - 3; - 1; - 3} \right)\) và mặt phẳng \(\left( P \right):x + y - z - 4 = 0\). Gọi \(M\left( {a;b;c} \right)\) là điểm thuộc mặt phẳng (P) sao cho biểu thức \(T = \left| {3\overrightarrow {MA} - 2\overrightarrow {MB} + \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất. Tính giá trị của biểu thức \({\rm{S}} = a + b + c\).
- Tổng các nghiệm của phương trình \(\sin \left( {\frac{{5\pi }}{4} - 6{\rm{x}}} \right) + 15\sin \left( {\frac{\pi }{4} + 2{\rm{x}}} \right) = 16\) trên đoạn \(\left[ { - 2019;2019} \right]\) bằng
- Tìm tập xác định D của hàm số \(y = {\left( {x + 1} \right)^\pi }\).
- Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {e^{ - x}} + \cos {\rm{x}}\). Tìm khẳng định đúng.
- Cho hình hộp chữ nhật \(ABC{\rm{D}}.A'B'C'D'\) có đáy \(ABC{\rm{D}}\) là hình vuông cạnh a và \({\rm{AA' = 2a}}\). Thể tích khối tứ diện \(B{\rm{D}}B'C\).
- Biết rằng tập hợp tất cả các giá trị của tham số m để phương trình \({{\rm{x}}^2} - x + 2\left( {1 - x} \right)\sqrt {x - m} - m = 0\) có 3 nghiệm phân biệt là \(\left[ {a;b} \right)\). Tính \(a + b\).