YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y = {x^3} - 2\left( {m - 1} \right){x^2} + 2\left( {{m^2} - 2m} \right)x + 4{m^2}\) có đồ thị \(\left( C \right)\) và đường thẳng \(d:y = 4{\rm{x}} + 8\). Đường thẳng \({\rm{d}}\) cắt đồ thị \(\left( C \right)\) tại 3 điểm phân biệt có hoành độ \({{\rm{x}}_1},{x_2},{x_3}\). Tìm giá trị lớn nhất của biểu thức \(P = x_1^3 + x_2^3 + x_3^3\). 

    • A. \(\max P = 16\sqrt 2  - 8\) 
    • B. \(\max P =  - 8\) 
    • C. \(\max P =  - 16\sqrt 2  - 8\) 
    • D. \(\max P = 8\) 

    Lời giải tham khảo:

    Đáp án đúng: A

    Hoành độ giao điểm của đồ thị hàm số \(y = {x^3} - 2\left( {m - 1} \right){x^2} + 2\left( {{m^2} - 2m} \right)x + 4{m^2}\) và đường thẳng \(y = 4x + 8\)là nghiệm của phương trình

    \(\begin{array}{l}{x^3} - 2\left( {m - 1} \right){x^2} + 2\left( {{m^2} - 2m} \right)x + 4{m^2} = 4x + 8\\ \Leftrightarrow {x^3} - 2\left( {m - 1} \right){x^2} + 2\left( {{m^2} - 2m - 2} \right)x + 4{m^2} - 8 = 0\end{array}\)

    \( \Leftrightarrow \left[ \begin{array}{l}x =  - 2\\{x^2} - 2mx + 2{m^2} - 4 = 0\left( 1 \right)\end{array} \right.\)

    Từ (1)  có \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}.{x_2} = 2{m^2} - 4\end{array} \right.\)

    Khi đó

    \(\begin{array}{l}P = x_1^3 + x_2^3 + x_3^3 = \left( {{x_1} + {x_1}} \right)\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 3{x_1}{x_2}} \right] - 8\\ \Rightarrow P =  - 4{m^3} + 24m - 8 = f\left( m \right)\end{array}\)

    \(\begin{array}{l}f'\left( m \right) =  - 12{m^2} + 24 = 0 \Leftrightarrow m =  \pm \sqrt 2 \\f\left( {\sqrt 2 } \right) = 16\sqrt 2  - 8\\f\left( { - 2} \right) =  - 16\sqrt 2  - 8\end{array}\)

    Nên \({P_{\max }} = 16\sqrt 2  - 8\)

    Chọn A.

    ATNETWORK

Mã câu hỏi: 352969

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
NONE
ON