YOMEDIA
NONE
  • Câu hỏi:

    Biết bất phương trình \({\log _5}\left( {{5^x} - 1} \right).{\log _{25}}\left( {{5^{x + 1}} - 5} \right) \le 1\) có tập nghiệm là đoạn [a;b]. Giá trị của \(a+b\) bằng

    • A. \(2 + {\log _5}156\)
    • B. \(-1 + {\log _5}156\)
    • C. \(-2 + {\log _5}156\)
    • D. \(-2 + {\log _5}26\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Điều kiện: \({5^x} - 1 > 0 \Leftrightarrow x > 0\) 

    Ta có:

    \(\begin{array}{l}
    {\log _5}\left( {{5^x} - 1} \right).{\log _{25}}\left( {{5^{x + 1}} - 5} \right) \le 1 \Leftrightarrow {\log _5}\left( {{5^x} - 1} \right).\frac{1}{2}{\log _5}\left[ {5\left( {{5^x} - 1} \right)} \right] \le 1\\
     \Leftrightarrow {\log _5}\left( {{5^x} - 1} \right).\left[ {1 + {{\log }_5}\left( {{5^x} - 1} \right)} \right] - 2 \le 0\\
     \Leftrightarrow \log _5^2\left( {{5^x} - 1} \right) + {\log _5}\left( {{5^x} - 1} \right) - 2 \le 0\\
     \Leftrightarrow \left[ {{{\log }_5}\left( {{5^x} - 1} \right) - 1} \right]\left[ {{{\log }_5}\left( {{5^x} - 1} \right) + 2} \right] \le 0\\
     \Leftrightarrow  - 2 \le {\log _5}\left( {{5^x} - 1} \right) \le 1 \Leftrightarrow {5^{ - 2}} \le {5^x} - 1 \le {5^1} \Leftrightarrow \frac{1}{{25}} \le {5^x} - 1 \le 5\\
     \Leftrightarrow \frac{{26}}{{25}} \le {5^x} \le 6 \Leftrightarrow {\log _5}\frac{{26}}{{25}} \le x \le {\log _5}6
    \end{array}\)

    Do đó tập nghiệm của bất phương trình là \(\left[ {{{\log }_5}\frac{{26}}{{25}};{{\log }_5}6} \right]  \Rightarrow a = {\log _5}\frac{{26}}{{25}};b = {\log _5}6\) 

    \( \Rightarrow a + b = {\log _5}\frac{{26}}{{25}} + {\log _5}6 = {\log _5}\frac{{156}}{{25}} = {\log _5}156 - {\log _5}25 = {\log _5}156 - 2\) 

    ATNETWORK

Mã câu hỏi: 66893

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON