ADMICRO
VIDEO
  • Câu hỏi:

    Cho hình chóp S.ABCD đều có AB = 2 và \(SA = 3\sqrt 2 \). Bán kính của mặt cầu ngoại tiếp hình chóp đã cho bằng

    • A. \(\frac{7}{4}\)
    • B. \(\frac{{\sqrt {33} }}{4}\)
    • C. \(\frac{9}{4}\)
    • D. 2

    Lời giải tham khảo:

    Đáp án đúng: C

    Gọi O là tâm hình vuông ABCDE là trung điểm SB.

    S.ABCD là hình chóp đều nên \(SO \bot \left( {ABCD} \right)\).

    Trong (SBO) kẻ đường trung trực của SB cắt SO tại I, khi đó \(IA = IB = IC = ID = IS\) nên I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD và bán kính mặt cầu là R = IS.

    Ta có ABCD là hình vuông cạnh 2

    \( \Rightarrow BD = \sqrt {B{C^2} + C{D^2}}  = 2\sqrt 2  \Rightarrow BO = \frac{{BD}}{2} = \sqrt 2 \).

    Ta có \(SA = SB = SC = SD = 3\sqrt 2 \) (vì S.ABCD là hình chóp đều) nên \(SE = EB = \frac{{3\sqrt 2 }}{2}\) 

    Xét tam giác SBO vuông tại O (vì \(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OB\)) có \(SO = \sqrt {S{B^2} - O{B^2}}  = \sqrt {18 - 2}  = 4\).

    Ta có \(\Delta SEI\) đồng dạng với tam giác SOB (g-g) \( \Rightarrow \frac{{SI}}{{SB}} = \frac{{SE}}{{SO}} \Leftrightarrow IS = \frac{{SB.SE}}{{SO}} = \frac{{3\sqrt 2 .\frac{{3\sqrt 2 }}{2}}}{4} = \frac{9}{4}\).

    Vậy bán kính \(R = \frac{9}{4}\).

    ADSENSE

Mã câu hỏi: 66882

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

ADMICRO

 

YOMEDIA
ON