Giải bài 7.3 tr 60 sách BT Toán lớp 9 Tập 2
(Đề thi học sinh giỏi Toán Bulgari – Mùa xuân 1997)
Tìm giá trị của \(\displaystyle m\) để phương trình
\(\displaystyle \left[ {{x^2} - 2mx - 4\left( {{m^2} + 1} \right)} \right]\left[ {{x^2} - 4x - 2m\left( {{m^2} + 1} \right)} \right] = 0\)
có đúng ba nghiệm phân biệt.
Hướng dẫn giải chi tiết
Hướng dẫn giải
- Biến đổi phương trình về
\(\displaystyle \left[ \begin{array}{l}
{x^2} - 2mx - 4\left( {{m^2} + 1} \right) = 0\,\,\left( 1 \right)\\
{x^2} - 4x - 2m\left( {{m^2} + 1} \right) = 0\,\,\left( 2 \right)
\end{array} \right.\)
- Nhận xét phương trình (1) luôn có hai nghiệm phân biệt.
- Phương trình đã cho có \(\displaystyle 3\) nghiệm phân biệt khi và chỉ khi phương trình (2) có một nghiệm duy nhất không trùng với hai nghiệm của (1) hoặc có hai nghiệm phân biệt, trong đó có một nghiệm là nghiệm của (1).
Lời giải chi tiết
Phương trình:
\(\displaystyle \eqalign{
& \left[ {{x^2} - 2mx - 4\left( {{m^2} + 1} \right)} \right]\left[ {{x^2} - 4x - 2m\left( {{m^2} + 1} \right)} \right] = 0 \cr
& \Leftrightarrow \left[ {\matrix{
{{x^2} - 2mx - 4\left( {{m^2} + 1} \right) = 0(1)} \cr
{{x^2} - 4x - 2m\left( {{m^2} + 1} \right) = 0(2)} \cr} } \right. \cr} \)
Ta xét phương trình (1): \(\displaystyle {x^2} - 2mx - 4\left( {{m^2} + 1} \right) = 0\)
\(\displaystyle {\Delta _1}' = {\left( { - m} \right)^2} - 1.\left[ { - 4\left( {{m^2} + 1} \right)} \right] = {m^2} + 4\left( {{m^2} + 1} \right) > 0\) với mọi \(\displaystyle m\)
Phương trình (1) luôn luôn có hai nghiệm phân biệt
Ta xét phương trình (2): \(\displaystyle {x^2} - 4x - 2m\left( {{m^2} + 1} \right) = 0\)
\(\displaystyle \eqalign{
& {\Delta _2}' = {\left( { - 2} \right)^2} - 1.\left[ { - 2m\left( {{m^2} + 1} \right)} \right] \cr
& = 4 + 2m\left( {{m^2} + 1} \right) \cr
& = 2{m^3} + 2m + 4 \cr} \)
Phương trình (2) có nghiệm khi và chỉ khi \(\displaystyle {\Delta _2}' \ge 0\)
\(\displaystyle \eqalign{
& \Rightarrow 2{m^3} + 2m + 4 \ge 0 \cr
& \Leftrightarrow {m^3} + m + 2 \ge 0 \cr
& \Leftrightarrow {m^3} + {m^2} - {m^2} - m + 2m + 2 \ge 0 \cr
& \Leftrightarrow {m^2}\left( {m + 1} \right) - m\left( {m + 1} \right) + 2\left( {m + 1} \right) \ge 0 \cr
& \Leftrightarrow \left( {m + 1} \right)\left( {{m^2} - m + 2} \right) \ge 0 \cr} \)
Vì \(\displaystyle {m^2} - m + 2 = {m^2} - 2.{1 \over 2}m + {1 \over 4} + {7 \over 4} \) \(\displaystyle = {\left( {m - {1 \over 2}} \right)^2} + {7 \over 4} > 0\)
\(\displaystyle \Rightarrow m + 1 \ge 0 \Leftrightarrow m \ge - 1\)
Vậy với \(\displaystyle m ≥ -1\) thì phương trình (2) có nghiệm.
Vậy phương trình đã cho có ba nghiệm phân biệt khi và chỉ khi xảy ra một trong hai trường hợp sau:
Trường hợp 1: Phương trình (2) có \(\displaystyle 1 \) nghiệm kép khác với nghiệm của phương trình (1).
Ta có: \(\displaystyle {\Delta _2}' = 0\) suy ra \(\displaystyle m = -1\) và nghiệm kép phương trình (2) là: \(\displaystyle x = 2\)
Khi đó, \(\displaystyle x = 2\) không được là nghiệm của phương trình (1) nên ta có:
\(2^2 - 2m.2 - 4\left( {{m^2} + 1} \right) \ne 0\)
\(\Leftrightarrow \displaystyle 4 - 4m - 4\left( {{m^2} + 1} \right) \ne 0\)
\(\displaystyle \eqalign{
& \Leftrightarrow 4 - 4m - 4{m^2} - 4 \ne 0 \cr
& \Leftrightarrow - 4m\left( {m + 1} \right) \ne 0 \cr
& \Leftrightarrow m\left( {m + 1} \right) \ne 0 \cr} \)
loại vì \(\displaystyle m = -1\)
Trường hợp 2: Phương trình (2) có hai nghiệm phân biệt \(\displaystyle x_1\) và \(\displaystyle x_2\) trong đó có \(\displaystyle 1\) nghiệm giả sử là \(\displaystyle x_1\) cũng là nghiệm của phương trình (1).
Phương trình (2) có \(\displaystyle 2\) nghiệm phân biệt \(\displaystyle \Leftrightarrow {\Delta _2}' > 0 \Leftrightarrow m > - 1\)
Và gọi \(x_1\) là nghiệm chung của hai phương trình (1) và (2), ta có:
\(\displaystyle \left\{ {\matrix{
{{x_1}^2 - 2m{x_1} - 4\left( {{m^2} + 1} \right) = 0} \cr
{{x_1}^2 - 4{x_1} - 2m\left( {{m^2} + 1} \right) = 0} \cr} } \right.\)
\(\displaystyle \eqalign{
& \Rightarrow \left( {4 - 2m} \right){x_1} + 2m\left( {{m^2} + 1} \right) - 4\left( {{m^2} + 1} \right) = 0 \cr
& \Leftrightarrow \left( {4 - 2m} \right){x_1} + 2{m^3} + 2m - 4{m^2} - 4 = 0 \cr
& \Leftrightarrow \left( {4 - 2m} \right){x_1} + 2\left( {{m^3} - 2{m^2} + m - 2} \right) = 0 \cr
& \Leftrightarrow \left( {4 - 2m} \right){x_1} + 2\left[ {{m^2}\left( {m - 2} \right) + \left( {m - 2} \right)} \right] = 0 \cr
& \Leftrightarrow \left( {4 - 2m} \right){x_1} + 2\left( {m - 2} \right)\left( {{m^2} + 1} \right) = 0 \cr
& \Leftrightarrow 2\left( {2 - m} \right){x_1} + 2\left( {m - 2} \right)\left( {{m^2} + 1} \right) = 0 \cr & \Leftrightarrow 2\left( {2 - m} \right)({x_1} -\left( {{m^2} + 1} \right)) = 0 \cr
& \Leftrightarrow {x_1} = {m^2} + 1 (m\ne 2) \cr} \)
Vì \(\displaystyle x_1\) cũng là nghiệm của phương trình (1) nên thay \(\displaystyle {x_1} = {m^2} + 1\) vào phương trình (1) ta có:
\(\displaystyle \eqalign{
& {\left( {{m^2} + 1} \right)^2} - 2m\left( {{m^2} + 1} \right) - 4\left( {{m^2} + 1} \right) = 0 \cr
& \Leftrightarrow \left( {{m^2} + 1} \right)\left[ {{m^2} + 1 - 2m - 4} \right] = 0 \cr} \)
(vì \(\displaystyle {m^2} + 1 > 0\) )
\(\displaystyle \eqalign{
& \Leftrightarrow {m^2} + 1 - 2m - 4 = 0 \cr
& \Leftrightarrow {m^2} - 2m - 3 = 0 \cr
& \Leftrightarrow {m^2} - 3m + m - 3 = 0 \cr
& \Leftrightarrow m\left( {m - 3} \right) + \left( {m - 3} \right) = 0 \cr
& \Leftrightarrow \left( {m - 3} \right)\left( {m + 1} \right) = 0 \cr
& \Leftrightarrow \left[ {\matrix{
{m = 3} \cr
{m = - 1} \cr} } \right. \cr} \)
Vì \(\displaystyle m > -1\) nên \(\displaystyle m = -1\) loại
Vậy \(\displaystyle m = 3 \) (thỏa mãn).
Thay \(\displaystyle m = 3\) vào phương trình (1) và (2) ta có:
Phương trình (1): \(\displaystyle {x^2} - 6x - 40 = 0\)
Phương trình (2): \(\displaystyle {x^2} - 4x - 60 = 0\)
Giải phương trình (1):
\(\displaystyle \eqalign{
& {x^2} - 6x - 40 = 0 \cr
& \Delta ' = {\left( { - 3} \right)^2} - 1.\left( { - 40} \right) = 9 + 40 = 49 > 0 \cr
& \sqrt {\Delta '} = \sqrt {49} = 7 \cr
& {x_1} = {{3 + 7} \over 1} = 10 \cr
& {x_2} = {{3 - 7} \over 1} = - 4 \cr} \)
Giải phương trình (2):
\(\displaystyle \eqalign{
& {x^2} - 4x - 60 = 0 \cr
& \Delta ' = {\left( { - 2} \right)^2} - 1.\left( { - 60} \right) = 4 + 60 = 64 > 0 \cr
& \sqrt {\Delta '} = \sqrt {64} = 8 \cr
& {x_1} = {{2 + 8} \over 1} = 10 \cr
& {x_2} = {{2 - 8} \over 1} = - 6 \cr} \)
Vậy phương trình đã cho có đúng \(\displaystyle 3\) nghiệm khi \(\displaystyle m = 3\)
-- Mod Toán 9 HỌC247
-
Tìm min của A= x^2+3xy+4y^2
bởi minh thuận 21/02/2019
cho các số thực x, y thỏa mã : x\(\ge\) 1 , x+y \(\le\) 4
tìm min : A= x^2+3xy+4y^2
Theo dõi (0) 1 Trả lời -
Giải phương trình x^4+căn(x^2+2012)=2014
bởi hi hi 22/02/2019
gpt \(x^4+\sqrt{x^2+2012}=2014\)
Theo dõi (0) 1 Trả lời -
Bài 7.3* trang 60 SBT Toán 9 tập 2
bởi Nguyễn Anh Hưng 22/02/2019
Bài 7.3* - Bài tập bổ sung (Sách bài tập - tập 2 - trang 60)(Đề thi học sinh giỏi Bulgari - Mùa xuân 1997)
Tìm giá trị của m để phương trình :
\(\left[x^2-2mx-4\left(m^2+1\right)\right]\left[x^2-4x-2m\left(m^2+1\right)\right]=0\)
có đúng 3 nghiệm phân biệt
Theo dõi (0) 1 Trả lời -
Bài 7.2* trang 60 SBT Toán 9 tập 2
bởi Vũ Hải Yến 22/02/2019
Bài 7.2* - Bài tập bổ sung (Sách bài tập - tập 2 - trang 60)Cho phương trình :
\(x+2\sqrt{x-1}-m^2+6m-11=0\)
a) Giải phương trình khi \(m=2\)
b) Chứng minh rằng phương trình có nghiệm với mọi giá trị của m
Theo dõi (0) 1 Trả lời -
Bài 7.1 trang 60 SBT Toán 9 tập 2
bởi can chu 22/02/2019
Bài 7.1 - Bài tập bổ sung (Sách bài tập - tập 2 - trang 60)Giải các phương trình :
a) \(x^4-2x^3+3x^2-2x-3=0\)
b) \(5-\sqrt{3-2x}=\left|2x-3\right|\)
Theo dõi (0) 1 Trả lời -
Bài 50 trang 60 SBT Toán 9 tập 2
bởi Lê Minh Hải 22/02/2019
Bài 50 (Sách bài tập - tập 2 - trang 60)Giải các phương trình sau bằng cách đặt ẩn phụ :
a) \(\left(4x-5\right)^2-6\left(4x-5\right)+8=0\)
b) \(\left(x^2+3x-1\right)^2+2\left(x^2+3x-1\right)-8=0\)
c) \(\left(2x^2+x-2\right)^2+10x^2+5x-16=0\)
d) \(\left(x^2-3x+4\right)\left(x^2-3x+2\right)=3\)
e) \(\dfrac{2x^2}{\left(x+1\right)^2}-\dfrac{5x}{x+1}+3=0\)
f) \(x-\sqrt{x-1}-3=0\)
Theo dõi (0) 1 Trả lời -
Bài 48 trang 60 sách bài tập toán 9 tập 2
bởi minh dương 01/10/2018
Bài 48 (Sách bài tập - tập 2 - trang 60)Giải các phương trình trùng phương :
a) \(x^4-8x^2-9=0\)
b) \(y^4-1,16y^2+0,16=0\)
c) \(z^4-7z^2-144=0\)
d) \(36t^4-13t^2+1=0\)
e) \(\dfrac{1}{3}x^4-\dfrac{1}{2}x^2+\dfrac{1}{6}=0\)
f) \(\sqrt{3}x^4-\left(2-\sqrt{3}\right)x^2-2=0\)
Theo dõi (0) 1 Trả lời -
Bài 47 trang 59 sách bài tập toán 9 tập 2
bởi Trần Thị Trang 01/10/2018
Bài 47 (Sách bài tập - tập 2 - trang 59)Giải các phương trình sau :
a) \(3x^3+6x^2-4x=0\)
b) \(\left(x+1\right)^3-x+1=\left(x-1\right)\left(x-2\right)\)
c) \(\left(x^2+x+1\right)^2=\left(4x-1\right)^2\)
d) \(\left(x^2+3x+2\right)^2=6\left(x^2+3x+2\right)\)
e) \(\left(2x^2+3\right)^2-10x^3-15x=0\)
f) \(x^3-5x^2-x+5=0\)
Theo dõi (0) 1 Trả lời -
Bài 46 trang 59 sách bài tập toán 9 tập 2
bởi can tu 01/10/2018
Bài 46 (Sách bài tập - tập 2 - trang 59)Giải các phương trình :
a) \(\dfrac{12}{x-1}-\dfrac{8}{x+1}=1\)
b) \(\dfrac{16}{x-3}+\dfrac{30}{1-x}=3\)
c) \(\dfrac{x^2-3x+5}{\left(x-3\right)\left(x+2\right)}=\dfrac{1}{x-3}\)
d) \(\dfrac{2x}{x-2}-\dfrac{x}{x+4}=\dfrac{8x+8}{\left(x-2\right)\left(x+4\right)}\)
e) \(\dfrac{x^3+7x^2+6x-30}{x^3-1}=\dfrac{x^2-x+16}{x^2+x+1}\)
f) \(\dfrac{x^2+9x-1}{x^4-1}=\dfrac{17}{x^3+x^2+x+1}\)
Theo dõi (0) 1 Trả lời -
Bài 46 trang 59 sách bài tập toán 9 tập 2
bởi Đào Lê Hương Quỳnh 01/10/2018
Bài 46 (Sách bài tập - tập 2 - trang 59)Giải các phương trình :
a) \(\dfrac{12}{x-1}-\dfrac{8}{x+1}=1\)
b) \(\dfrac{16}{x-3}+\dfrac{30}{1-x}=3\)
c) \(\dfrac{x^2-3x+5}{\left(x-3\right)\left(x+2\right)}=\dfrac{1}{x-3}\)
d) \(\dfrac{2x}{x-2}-\dfrac{x}{x+4}=\dfrac{8x+8}{\left(x-2\right)\left(x+4\right)}\)
Theo dõi (0) 1 Trả lời -
Bài 45 trang 59 sách bài tập toán 9 tập 2
bởi Kim Ngan 26/10/2018
Bài 45 (Sách bài tập - tập 2 - trang 59)
Giải các phương trình :
a) \(\left(x+2\right)^2-3x-5=\left(1-x\right)\left(1+x\right)\)
b) \(\left(x-1\right)^3+2x=x^3-x^2-2x+1\)
c) \(x\left(x^2-6\right)-\left(x-2\right)^2=\left(x+1\right)^3\)
d) \(\left(x+5\right)^2+\left(x-2\right)^2+\left(x+7\right)\left(x-7\right)=12x-23\)
Theo dõi (0) 2 Trả lời -
Tìm a, b, biết a+b=7 và ab=12 ab=12
bởi Nguyễn Anh Hưng 01/10/2018
Tìm a, b, biết:
a+b=7
ab=12
Theo dõi (0) 1 Trả lời -
Giải phương trình x^4=3x^2+10x+4
bởi Lê Trung Phuong 11/01/2019
Giải phương trình :
\(x^4=3x^2+10x+4\)
Theo dõi (0) 1 Trả lời