AMBIENT

Bài tập 47 trang 86 SGK Toán 9 Tập 2

Giải bài 47 tr 86 sách GK Toán 9 Tập 2

Gọi cung chứa góc \(55^o\) ở bài tập 46 là \(\widehat{AmB}\). Lấy điểm \(M_1\) nằm bên trong và điểm \(M_2\) nằm bên ngoài đường tròn chứa cung này sao cho \(M_1,M_2\) và cung AmB nằm cùng về một phía đối với đường thẳng AB. Chứng minh rằng:

\(a) \widehat{AM_1B}>55^o\)

\(b) \widehat{AM_2B}<55^o\)

ADSENSE

Hướng dẫn giải chi tiết bài 47

Với bài 47 này, chúng ta sẽ sử dụng hình 46, kết hợp với dạng góc đã được học đó là góc có đỉnh nằm trong và ngoài đường tròn để chứng minh bài toán!

Gọi \(\small A_1;B_1\) lần lượt là giao điểm của \(\small AM_1;BM_1\) với đường tròn.

Góc AM1B là góc có đỉnh nằm trong đường tròn nên:

\(\small \widehat{AM_1B}=\frac{1}{2}(sd\widehat{AB}+sd\widehat{A_1B_1})\)

Mà \(\small sd\widehat{A_1B_1}>0\) nên ta có điều cần chứng minh.

\(\small \widehat{AM_1B}>55^o\)

Câu b:

Tương tự câu a, ta sẽ vẽ điểm M2 nằm ngoài đường tròn

Gọi \(\small A_2;B_2\) lần lượt là giao điểm của \(\small M_2A;M_2B\) với đường tròn.

Góc AM2B là góc có đỉnh nằm ngoài đường tròn nên:

\(\small \widehat{AM_2B}=\frac{1}{2}(sd\widehat{AB}-sd\widehat{A_2B_2})\)

Mà \(\small sd\widehat{A_2B_2}>0\) nên ta có điều cần chứng minh.

\(\small \widehat{AM_2B}<55^o\)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 47 trang 86 SGK Toán 9 Tập 2 HAY thì click chia sẻ 
  • Sasu ka

    Bài 6.1 - Bài tập bổ sung (Sách bài tập - tập 2 - trang 106)

    Dựng một cung chứa góc \(60^0\) trên đoạn thẳng AB cho trước ?

     

    Theo dõi (0) 1 Trả lời
  • Nguyễn Thị Thu Huệ

    Bài 36 (Sách bài tập - tập 2 - trang 106)

    Cho nửa đường tròn đường kính AB cố định. C là một điểm trên nửa đường tròn, trên dây AC kéo dài lấy điểm D sao cho CD = CB

     

    a) Tìm quỹ tích các điểm D khi C chạy trên nửa đường tròn đã cho

     

    b) Trên tia CA lấy điểm E sao cho CE = CB. Tìm quỹ tích các điểm E khi C chạy trên nửa đường tròn đã cho 

     

    Theo dõi (0) 1 Trả lời

 

AMBIENT
?>