YOMEDIA
VIDEO

Bài tập 2.3 trang 63 SBT Hình học 11

Giải bài 2.3 tr 63 SBT Hình học 11

Cho tứ diện ABCD. Trên cạnh AB lấy điểm I và lấy các điểm J, K lần lượt là điểm thuộc miền trong các tam giác BCD và ACD. Gọi L là giao điểm của JK với mặt phẳng (ABC)

a) Hãy xác định điểm L.

b) Tìm giao tuyến của mặt phẳng (IJK) với các mặt của tứ diện ABCD.

RANDOM

Hướng dẫn giải chi tiết

 
 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi N = DK ∩ AC; M = DJ ∩ BC.

Ta có (DJK) ∩ (ABC) = MN ⇒ MN ⊂ (ABC).

Vì L = (ABC) ∩ JK nên dễ thấy L = JK ∩ MN.

b) Ta có I là một điểm chung của (ABC) và (IJK).

Mặt khác vì L = MN ∩ JK mà MN ⊂ (ABC) và JK ⊂ (IJK) nên L là điểm chung thứ hai của (ABC) và (IJK), suy ra (IJK) ∩ (ABC) = IL.

Gọi E = IL ∩ AC; F = EK ∩ CD. Lí luận tương tự ta có EF = (IJK) ∩ (ACD).

Nối FJ cắt BD tại P; P là một giao điểm (IJK) và (BCD).

Ta có PF = (IJK) ∩ (BCD) Và IP = (ABD) ∩ (IJK).

-- Mod Toán 11 HỌC247

 
Nếu bạn thấy hướng dẫn giải Bài tập 2.3 trang 63 SBT Hình học 11 HAY thì click chia sẻ 
YOMEDIA

 

YOMEDIA
1=>1