Giải bài 2.7 tr 64 SBT Hình học 11
Cho tứ diện SABC. Trên SA, SB và SC lần lượt lấy các điểm D, E và F sao cho DE cắt AB tại I, EF cắt BC tại J, FD cắt CA tại K.
Chứng minh ba điểm I, J, K thẳng hàng.
Hướng dẫn giải chi tiết
Ta có:
I = DE ∩ AB
DE ⊂ (DEF) ⇒ I ∈ (DEF)
AB ⊂ (ABC) ⇒ I ∈ (ABC)
Lí luận tương tự thì J, K cũng lần lượt thuộc về hai mặt phẳng trên nên I, J, K thuộc về giao tuyến của (ABC) và (DEF) nên I, J, K thẳng hàng.Ta có:
-- Mod Toán 11 HỌC247
-
Trong phát biểu sau đây, phát biểu nào đúng?
bởi Hong Van 22/01/2021
A. Hình chóp có tất cả các mặt là hình tam giác
B. Tất cả các mặt bên của hình chóp là hình tam giác
C. Tồn tại một mặt bên của hình chóp không phải là hình tam giác
D. Số cạnh bên của hình chóp bằng số mặt của nó
Theo dõi (0) 1 Trả lời -
Cho hình chóp SABCD có đáy là hình bình hành tâm O. Gọi MN lần lượt là trung điểm của BC và SD. a) xác đinh điểm I của dg thẳng AN vs mp SAC ,b) xác đinh giao điểm K của MN với SAC
bởi Huyền Ngân 12/09/2020
A b c d e f g h i kTheo dõi (0) 0 Trả lời
Bài tập SGK khác
Bài tập 2.5 trang 64 SBT Hình học 11
Bài tập 2.6 trang 64 SBT Hình học 11
Bài tập 2.8 trang 64 SBT Hình học 11
Bài tập 2.9 trang 64 SBT Hình học 11
Bài tập 1 trang 49 SGK Hình học 11 NC
Bài tập 2 trang 50 SGK Hình học 11 NC
Bài tập 3 trang 50 SGK Hình học 11 NC
Bài tập 4 trang 50 SGK Hình học 11 NC
Bài tập 5 trang 50 SGK Hình học 11 NC
Bài tập 6 trang 50 SGK Hình học 11 NC
Bài tập 7 trang 50 SGK Hình học 11 NC
Bài tập 8 trang 50 SGK Hình học 11 NC
Bài tập 9 trang 50 SGK Hình học 11 NC
Bài tập 10 trang 50 SGK Hình học 11 NC
Bài tập 11 trang 50 SGK Hình học 11 NC
Bài tập 12 trang 51 SGK Hình học 11 NC
Bài tập 13 trang 51 SGK Hình học 11 NC
Bài tập 14 trang 51 SGK Hình học 11 NC