Hoạt động khám phá 2 trang 47 SGK Toán 10 Chân trời sáng tạo tập 2
Trong mặt phẳng Oxy, cho đường thẳng \(\Delta \) đi qua điểm \({M_0}\left( {{x_0};{y_0}} \right)\) và nhận \(\overrightarrow u = \left( {{u_1};{u_2}} \right)\) là vectơ chỉ phương. Với mỗi điểm \(M\left( {x;y} \right)\) thuộc \(\Delta \), tìm tọa độ của điểm M theo tọa độ của \({M_0}\) và \(\overrightarrow u \)
Hướng dẫn giải chi tiết Hoạt động khám phá 2
Phương pháp giải
M và \({M_0}\) thuộc \(\Delta \) nên \({\overrightarrow {MM} _0}\) làm vectơ chỉ phương
Lời giải chi tiết
\({\overrightarrow {MM} _0} = \left( {{x_0} - x;{y_0} - y} \right)\) mà \(\Delta \) nhận \({\overrightarrow {MM} _0}\)làm vectơ chỉ phương nên ta có:
\(\left\{ \begin{array}{l}{x_0} - x = {u_1}\\{y_0} - y = {u_2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = {x_0} - {u_1}\\y = {y_0} - {u_2}\end{array} \right.\)
Vậy \(M\left( {{x_0} - {u_1};{y_0} - {u_2}} \right)\)
-- Mod Toán 10 HỌC247
-
Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có A(– 2 ; 4), B(– 5 ; − 1), C(8 ; – 2). Giải tam giác ABC (làm tròn các kết quả số đo góc đến hàng đơn vị).
bởi Nhật Duy 25/11/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Hoạt động khởi động trang 46 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 1 trang 46 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 1 trang 47 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Vận dụng 1 trang 48 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 3 trang 48 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 2 trang 49 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Vận dụng 2 trang 49 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 3 trang 51 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Vận dụng 3 trang 51 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 4 trang 51 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 4 trang 53 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Vận dụng 4 trang 53 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 5 trang 54 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 6 trang 54 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 5 trang 56 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Vận dụng 5 trang 56 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 7 trang 56 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Thực hành 6 trang 57 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Vận dụng 6 trang 57 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 57 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 57 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 57 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 57 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 58 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 58 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 7 trang 58 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 8 trang 58 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 9 trang 58 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 10 trang 58 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 1 trang 65 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 2 trang 65 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 3 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 4 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 5 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 6 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 7 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 7 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 8 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 9 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 10 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 11 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST