Giải bài 6 trang 58 SGK Toán 10 Chân trời sáng tạo tập 2
Tìm số đo của góc giữa hai đường thẳng \({d_1}\) và \({d_2}\) trong các trường hợp sau:
a) \({d_1}:x - 2y + 3 = 0\) và \({d_2}:3x - y - 11 = 0\)
b) \({d_1}:\left\{ \begin{array}{l}x = t\\y = 3 + 5t\end{array} \right.\) và \({d_2}:x + 5y - 5 = 0\)
c) \({d_1}:\left\{ \begin{array}{l}x = 3 + 2t\\y = 7 + 4t\end{array} \right.\) và \({d_2}:\left\{ \begin{array}{l}x = t\\y = - 9 + 2t\end{array} \right.\)
Hướng dẫn giải chi tiết
Phương pháp giải
Bước 1: Xác định 2 vectơ pháp tuyến (hoặc chỉ phương) của hai đường thẳng đã cho: \((a_1;b_1), (a_2;b_2)\)
Bước 2: Tính cos góc giữa hai đường thẳng bằng công thức \(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2}} \right|}}{{\sqrt {{a_1}^2 + {b_1}^2} \sqrt {{a_2}^2 + {b_2}^2} }}\) => suy ra góc giữa 2 đt.
Lời giải chi tiết
a) Ta có vectơ pháp tuyến của hai đường thẳng \({d_1}\)và \({d_2}\) lần lượt là \(\overrightarrow {{n_1}} = \left( {1; - 2} \right),\overrightarrow {{n_2}} = \left( {3; - 1} \right)\)
Ta có \(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {1.3 + \left( { - 2} \right).( - 1)} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2}} \sqrt {{3^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \left( {{d_1},{d_2}} \right) = 45^\circ \)
b) Ta có vectơ pháp tuyến của hai đường thẳng \({d_1}\) và \({d_2}\) lần lượt là \(\overrightarrow {{n_1}} = \left( {5; - 1} \right),\overrightarrow {{n_2}} = \left( {1;5} \right)\)
Ta có \({a_1}{a_2} + {b_1}{b_2} = 5.1 + ( - 1).5 = 0\)
Suy ra \(\left( {{d_1},{d_2}} \right) = 90^\circ \)
c) Ta có vectơ chỉ phương của hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) lần lượt là \(\overrightarrow {{u_1}} = \left( {2; 4} \right),\overrightarrow {{u_2}} = \left( {1;2} \right)\)
\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {2.1+4.2} \right|}}{{\sqrt {{2^2} + {{ { 4} }^2}} \sqrt {{1^2} + {{{ 2}}^2}} }} = 1 \Rightarrow \left( {{d_1},{d_2}} \right) = 0^\circ \)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 4 trang 57 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 58 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 7 trang 58 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 8 trang 58 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 9 trang 58 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 10 trang 58 SGK Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 1 trang 65 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 2 trang 65 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 3 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 4 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 5 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 6 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 7 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 7 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 8 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 9 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 10 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải Bài 11 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST