YOMEDIA
NONE

Giải Bài 6 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải Bài 6 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2

Cho đường thẳng d có phương trình tham số \(\left\{ \begin{array}{l}x = 1 + t\\y = 2 + 2t\end{array} \right.\)

Tìm giao điểm của d với đường thẳng \(\Delta :x + y - 2 = 0\)

ATNETWORK

Hướng dẫn giải chi tiết Bài 7

Phương pháp giải

\({\Delta _1}\) cắt \({\Delta _2}\) tại \(M\left( {{x_0};{y_0}} \right)\) ⇔ hệ (*) có nghiệm duy nhất \(\left( {{x_0};{y_0}} \right)\).

\({\Delta _1}\) song song với \({\Delta _2}\) ⇔ hệ (*) vô nghiệm.

\({\Delta _1}\) trùng \({\Delta _2}\) ⇔ hệ (*) có vô số nghiệm.

Lời giải chi tiết

Gọi \(A\left( {{x_A};{y_A}} \right)\) là giao điểm của 2 đường thẳng. 

\( \Rightarrow A \in d\) và \(A \in \Delta \)

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}
{{x_A} = 1 + t}\\
{{y_A} = 2 + 2t}
\end{array}} \right.\) và \({x_A} + {y_A} - 2 = 0\)

\( \Rightarrow  (1 + t) + (2 + 2t) - 2 = 0 \Rightarrow 3t + 1 = 0 \Rightarrow t = \frac{{ - 1}}{3}\)

\( \Rightarrow {x_A} = \frac{2}{3};{y_A} = \frac{4}{3}\)

Vậy giao của hai đường thẳng là \( A\left( {\frac{2}{3};\frac{4}{3}} \right)\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải Bài 6 trang 66 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON