YOMEDIA
NONE

Giải bài 4 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 4 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1

Cho tam giác ABC có \(\widehat A = {120^ \circ },b = 8,c = 5.\) Tính:

a) Cạnh a và các góc \(\widehat B,\widehat C.\)

b) Diện tích tam giác ABC

c) Bán kính đường tròn ngoại tiếp và đường cao AH của tam giác.

ATNETWORK

Hướng dẫn giải chi tiết Bài 4

Phương pháp giải

a) +) Tính a: Áp dụng định lí cosin:  \({a^2} = {b^2} + {c^2} - 2bc.\cos A\)

+) Tính góc \(B,C\): Áp dụng định lí sin: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)

b) Áp dụng công thức \(S = \frac{1}{2}bc.\sin A\)

c)

+) Áp dụng định lí sin: \(R = \frac{a}{{\sin A}}\)

+) Đường cao AH: \(AH = \frac{{2S}}{a}\)

Lời giải chi tiết

a) 

Áp dụng định lí cosin, ta có:

 \(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc.\cos A\\ \Leftrightarrow {a^2} = {8^2} + {5^2} - 2.8.5.\cos {120^ \circ } = 129\\ \Rightarrow a = \sqrt {129} \end{array}\)

Áp dụng định lí sin, ta có:

\(\begin{array}{l}\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} \Rightarrow \frac{{\sqrt {129} }}{{\sin {{120}^ \circ }}} = \frac{8}{{\sin B}} = \frac{5}{{\sin C}}\\ \Rightarrow \left\{ \begin{array}{l}\sin B = \frac{{8.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,61\\\sin C = \frac{{5.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,38\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\widehat B \approx 37,{59^ \circ }\\\widehat C \approx 22,{41^ \circ }\end{array} \right.\end{array}\)

b) Diện tích tam giác ABC là: \(S = \frac{1}{2}bc.\sin A = \frac{1}{2}.8.5.\sin {120^ \circ } = 10\sqrt 3 \)

c) 

+) Theo định lí sin, ta có: \(R = \frac{a}{{\sin A}} = \frac{{\sqrt {129} }}{{\sin {{120}^ \circ }}} = 2\sqrt {43} \)

+) Đường cao AH của tam giác bằng: \(AH = \frac{{2S}}{a} = \frac{{2.10\sqrt 3 }}{{\sqrt {129} }} = \frac{{20\sqrt {43} }}{{43}}\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 4 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
YOMEDIA

Bài tập SGK khác

Giải bài 2 trang 78 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 3 trang 78 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 5 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 6 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 7 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 8 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 9 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 10 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 1 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 2 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 3 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 4 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 5 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 6 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 7 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 8 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 9 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 10 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 1 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 2 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 3 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 4 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 5 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 6 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 7 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON