Giải bài 3 trang 19 SBT Toán 10 Chân trời sáng tạo tập 2
Khẳng định nào sau đây đúng với tam thức bậc hai \(f\left( x \right) = 10{x^2} - 3x - 4\)?
A. \(f\left( x \right) > 0\) với mọi x không thuộc khoảng \(\left( { - 1;1} \right)\)
B. \(f\left( x \right) < 0\) với mọi x thuộc khoảng \(\left( { - 1;1} \right)\)
C. \(f\left( x \right) \ge 0\) với mọi x thuộc khoảng \(\left( { - \frac{1}{2};\frac{5}{4}} \right)\)
D. Các khẳng định trên đều sai
Hướng dẫn giải chi tiết Bài 3
Phương pháp giải
Tam thức \(f\left( x \right) = 10{x^2} - 3x - 4\) có \(a = 10 > 0\) và hai nghiệm \({x_1} = - \frac{1}{2};{x_2} = \frac{4}{5}\)
Lời giải chi tiết
Nên hàm số dương khi \(\left( { - \infty ; - \frac{1}{2}} \right) \cup \left( {\frac{4}{5}; + \infty } \right)\) và âm khi \(\left( { - \frac{1}{2};\frac{4}{5}} \right)\)
Chọn D
-- Mod Toán 10 HỌC247
-
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Giải bài 1 trang 19 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 19 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 19 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 20 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 20 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 7 trang 20 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 8 trang 20 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 9 trang 20 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 10 trang 20 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 11 trang 21 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 12 trang 21 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 21 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 21 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 21 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 22 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 22 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 22 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 7 trang 22 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 8 trang 22 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 9 trang 23 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 10 trang 23 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST