Giải bài 2 trang 21 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Xét dấu của các tam thức bậc hai sau:
a) \(f\left( x \right) = - 7{x^2} + 44x - 45\)
b) \(f\left( x \right) = 4{x^2} + 36x + 81\)
c) \(f\left( x \right) = 9{x^2} - 6x + 3\)
d) \(f\left( x \right) = - 9{x^2} + 30x - 25\)
e) \(f\left( x \right) = - {x^2} - 4x + 3\)
g) \(f\left( x \right) = - 4{x^2} + 8x - 7\)
Hướng dẫn giải chi tiết Bài 2
Phương pháp giải
Để xét dâu tam thức bậc hai \(f(x) = a{x^2} + bx + c\left( {a \ne 0} \right)\), ta thực hiện các bước sau:
Bước 1: Tỉnh và xác định đâu của biệt thức \(\Delta \);
Bước 2: Xác định nghiệm của ƒ(x) (nếu có);
Bước 3: Xác định đâu của hệ sô a,
Bước 4: Xác định dâu của ƒ(x)
Lời giải chi tiết
a) \(f\left( x \right) = - 7{x^2} + 44x - 45\) có \(\Delta = 676 > 0\), hai nghiệm \({x_1} = \frac{9}{7};{x_2} = 5\) và có \(a = - 7 < 0\)
Ta có bảng xét dấu \(f\left( x \right)\) như sau:
Vậy \(f\left( x \right)\) dương trong khoảng \(\left( {\frac{9}{7};5} \right)\) và âm trong khoảng \(\left( { - \infty ;\frac{9}{7}} \right) \cup \left( {5; + \infty } \right)\)
b) \(f\left( x \right) = 4{x^2} + 36x + 81\) có \(\Delta = 0\), nghiệm kép \({x_1} = {x_2} = - \frac{9}{2}\) và có \(a = 4 > 0\)
nên \(f\left( x \right)\) luôn dương với \(x \ne - \frac{9}{2}\)
Vậy \(f\left( x \right)\) dương trong khoảng \(\mathbb{R}\backslash \left\{ { - \frac{9}{2}} \right\}\)
c) \(f\left( x \right) = 9{x^2} - 6x + 3\) có \(\Delta = - 72 < 0\) và\(a = 9 > 0\)
nên \(f\left( x \right)\) luôn dương với mọi \(x \in \mathbb{R}\)
Vậy \(f\left( x \right)\) dương với mọi x
d) \(f\left( x \right) = - 9{x^2} + 30x - 25\) có \(\Delta = 0\), nghiệm kép \({x_1} = {x_2} = \frac{5}{3}\) và có \(a = - 9 < 0\)
nên \(f\left( x \right)\) luôn âm với \(x \ne \frac{5}{3}\)
Vậy \(f\left( x \right)\) âm trong khoảng \(\mathbb{R}\backslash \left\{ {\frac{5}{3}} \right\}\)
e) \(f\left( x \right) = {x^2} - 4x + 3\) có \(\Delta = 4 > 0\), hai nghiệm \({x_1} = 1;{x_2} = 3\) và có \(a = 1 > 0\)
Ta có bảng xét dấu \(f\left( x \right)\) như sau:
Vậy \(f\left( x \right)\) dương trên khoảng \(\left( { - \infty ;1} \right) \cup \left( {3; + \infty } \right)\) và âm trong khoảng \(\left( {1;3} \right)\)
g) \(f\left( x \right) = - 4{x^2} + 8x - 7\) có có \(\Delta = - 48 < 0\) và\(a = - 4 < 0\)
nên \(f\left( x \right)\) luôn âm với mọi \(x \in \mathbb{R}\)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 12 trang 21 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 21 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 21 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 22 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 22 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 22 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 7 trang 22 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 8 trang 22 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 9 trang 23 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST
Giải bài 10 trang 23 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST