YOMEDIA
NONE

Mạch điện xoay chiều gồm một điện trở, một cuộn dây và một tụ điện ghép nối tiếp (\(H.15.2).\) Điện áp tức thời giữa hai đầu đoạn mạch \(u = 65\sqrt 2 cos100\pi t(V).\) Các điện áp hiệu dụng \({U_{AM}} = 13V;{U_{MN}} = 13V;{U_{NB}} = 65V.\)

a) Chứng tỏ rằng cuộn dây có điện trở thuần \(r \ne 0.\)

b) Tính hệ số công suất của mạch.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • a) Xét \(U_{AM}^2 + {({U_{MN}} - {U_{NB}})^2} \\= {13^2} + {(13 - 65)^2} = 2873\)

    \(U_{AB}^2 = {65^2} = 4225\)

    Nhận thấy \(U_{AB}^2 \ne {U_{AM}}^2 + {({U_{MN}} - {U_{NB}})^2}\)

    Vậy trong cuộn dây còn có điện trở \(r\)

    b) Ta có:

    \(\begin{array}{l}U_{MN}^2 = U_r^2 + U_L^2\\ \Rightarrow {U_L} = \sqrt {U_{MN}^2 - U_r^2}  = \sqrt {{{13}^2} - U_r^2} (1)\end{array}\)

    \(\begin{array}{l}U_{AB}^2 = {({U_R} + {U_r})^2} + {({U_L} - {U_C})^2}\\ \Leftrightarrow {65^2} = {(13 + {U_r})^2} + {({U_L} - 65)^2}(2)\end{array}\)

    Từ (1)(2)\( \Rightarrow {65^2} = {(13 + {U_r})^2} + {(\sqrt {{{13}^2} - U_r^2}  - 65)^2}\)

    Giải được \({U_r} = 12V;{U_L} = 5V\)

    Hệ số công suất đoạn mạch \(\cos \varphi  = \dfrac{{{U_R} + {U_r}}}{{{U_{AB}}}} = \dfrac{{13 + 12}}{{65}} = \dfrac{5}{{13}}\)

      bởi Nguyễn Anh Hưng 31/12/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON