YOMEDIA
NONE

Mạch điện xoay chiều gồm điện trở R, cuộn dây thuần cảm L, tụ điện có điện dung C mắc nối tiếp, trong đó R, L, C có giá trị không đổi. Đặt vào hai đầu đoạn mạch một điện áp \(u={{U}_{o}}\cos \omega t\) với \(\omega \) thay đổi. Khi \(\omega =50\pi \,\,rad/s\) thì cường độ dòng điện trong mạch có giá trị bằng nhau. Để cường độ dòng điện qua mạch đạt giá trị cực đại thì \(\omega \) có giá trị?

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có: \({{I}_{{{\omega }_{1}}}}={{I}_{{{\omega }_{2}}}}\)

    \(\begin{align} & \Rightarrow \frac{U}{\sqrt{{{R}^{2}}+{{\left( {{Z}_{{{L}_{1}}}}-{{Z}_{{{C}_{2}}}} \right)}^{2}}}}=\frac{U}{\sqrt{{{R}^{2}}+{{\left( {{Z}_{{{L}_{2}}}}-{{Z}_{{{C}_{2}}}} \right)}^{2}}}} \\ & \Rightarrow {{Z}_{{{L}_{1}}}}-{{Z}_{{{C}_{1}}}}\,{{\,}^{2}}={{Z}_{{{L}_{2}}}}-{{Z}_{{{C}_{2}}}}\,{{\,}^{2}}\Rightarrow {{Z}_{{{L}_{1}}}}-{{Z}_{{{C}_{1}}}}=-{{Z}_{{{L}_{2}}}}-{{Z}_{{{C}_{2}}}} \\ \end{align}\)

    \(\begin{align} & \Rightarrow {{Z}_{{{L}_{1}}}}+{{Z}_{{{L}_{2}}}}={{Z}_{{{C}_{2}}}}+{{Z}_{{{C}_{1}}}} \\ & \Rightarrow L.{{\omega }_{1}}+{{\omega }_{2}}=\left( \frac{1}{{{\omega }_{1}}}+\frac{1}{{{\omega }_{2}}} \right).\frac{1}{C} \\ & \Rightarrow {{\omega }_{1}}.{{\omega }_{2}}=\frac{1}{LC}=\omega _{o}^{2}\Rightarrow {{\omega }_{o}}=100\pi (rad/s) \\ \end{align}\)

      bởi Ban Mai 15/02/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON