YOMEDIA
NONE

Xác định giá trị của m để phương trình x^2−2(m+1)x+m2−4m+5=0 có 2 nghiệm phân biệt đều dương

Cho phương trình: \(x^2-2\left(m+1\right)x+m^2-4m+5=0\)

Xác định giá trị của m để phương trình có 2 nghiệm phân biệt đều dương

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Để pt có hai nghiệm phân biệt thì:

    \(\Delta'=(m+1)^2-(m^2-4m+5)> 0\)

    \(\Leftrightarrow 6m-4>0 \)

    \(\Leftrightarrow m> \frac{2}{3}\) (1)

    ---------------------------------------

    Khi đó, áp dụng hệ thức Viete với $x_1,x_2$ là hai nghiệm của PT. Để $x_1,x_2$ đều mang dấu dương thì:

    \(\left\{\begin{matrix} x_1+x_2=2(m+1)>0 \\ x_1x_2=m^2-4m+5> 0\end{matrix}\right.\)

    \(\Leftrightarrow \left\{\begin{matrix} m> -1\\ (m-2)^2+1> 0\end{matrix}\right.\Leftrightarrow m> -1\) (2)

    Từ (1),(2) suy ra \(m> \frac{2}{3}\)

      bởi Đình Hiền 26/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON