YOMEDIA
NONE

Chứng minh rằng a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2⋮/25

CMR :

a) \(n^2+7n-40⋮̸121\forall n\in N\)

b)\(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2+\left(a+4\right)^2⋮̸25\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    b) Giả sử phản chứng, nghĩa là

    \(a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2\vdots 25\)

    Thực hiện khai triển bằng hằng đẳng thức, ta có:

    \(a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2\)

    \(=5a^2+20a+30\)

    Khi đó:

    \(a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2\vdots 25\)

    \(\Leftrightarrow 5a^2+20a+30\vdots 25\)

    \(\Leftrightarrow a^2+4a+6\vdots 5\)

    Xét \(a\equiv 0\pmod 5\rightarrow a^2+4a+6\equiv 6\not\equiv 0\pmod 5\)

    Xét \(a\equiv 1\pmod 5\rightarrow a^2+4a+6\equiv 1+4+6\not\equiv 0\pmod 5\)

    Xét \(a\equiv 2\pmod 5\rightarrow a^2+4a+6\equiv 18\not\equiv 0\pmod 5\)

    Xét \(a\equiv 3\pmod {5}\rightarrow a^2+4a+6=27\not\equiv 0\pmod {5}\)

    Xét \(a\equiv 4\pmod 5\Rightarrow a^2+4a+6\equiv 38\not\equiv 0\pmod 5\)

    Do đo, \(a^2+4a+6\not\vdots 5\), nghĩa là điều giả sử là sai. Ta có đpcm.

      bởi Trúc Quỳnh Ngô 30/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON