YOMEDIA
NONE

Chứng minh rằng 4(a^2+1)(b^2+1)(c^2+1)≥3(a+b+c)^2

Chứng minh rằng: \(4\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge3\left(a+b+c\right)^2\)

Akai Haruma Nguyễn Huy Thắng Giúp em với ạ!! :::)))

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Áp dụng BĐT Cauchy-Schwarz:

    \((a^2+1)[1+(b+c)^2]\geq (a+b+c)^2\)

    Do đó ta chỉ cần chỉ ra rằng

    \(4(a^2+1)(b^2+1)(c^2+1)\geq 3(a^2+1)[1+(b+c)^2]\)

    \(\Leftrightarrow 4(b^2+1)(c^2+1)\geq 3[1+(b+c)^2]\)

    \(\Leftrightarrow 4b^2c^2+1+b^2+c^2\geq 6bc\)

    \(\Leftrightarrow (2bc-1)^2+(b-c)^2\geq 0\) ( luôn đúng)

    Do đó ta có đpcm

    Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{2}}\)

      bởi Trương Trâm 21/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON