YOMEDIA
NONE

Chứng minh rằng 2a+2b+1 là số chính phương

cho hai số tự nhiên a,b thỏa mãn:\(2a^2+a=3b^2+b\)

Chứng minh rằng:2a+2b+1 là số chính phương

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Ta có:

    \(2a^2+a=3b^2+b\)

    \(\Leftrightarrow 2(a^2-b^2)+(a-b)=b^2\)

    \(\Leftrightarrow (a-b)(2a+2b+1)=b^2\)

    Giả sử $a-b, 2a+2b+1$ không nguyên tố cùng nhau. Khi đó, giữa $a-b,2a+2b+1$ sẽ tồn tại ước nguyên tố chung.

    Gọi p là ước nguyên tố chung của \(a-b, 2a+2b+1\)

    \(\Rightarrow \left\{\begin{matrix} a-b\vdots p\\ 2a+2b+1\vdots p\end{matrix}\right.\)

    Vì \((a-b)(2a+2b+1)=b^2\Rightarrow b^2\vdots p\Rightarrow b\vdots p\)

    \(\left\{\begin{matrix} b\vdots p\\ a-b\vdots p\end{matrix}\right.\rightarrow a\vdots p\)

    \(\left\{\begin{matrix} a\vdots p\\ b\vdots p\\ 2a+2b+1\vdots p\end{matrix}\right.\Rightarrow 1\vdots p\) (vô lý)

    Vậy $a-b,2a+2b+1$ nguyên tố cùng nhau. Mà tích của 2 số đó là một số chính phương nên bản thân mỗi số cũng là số chính phương.

    Do đó \(2a+2b+1\) là số chính phương.

      bởi Huyền Trang 18/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON