YOMEDIA
NONE

Chứng minh rằng 1/BK^2=1/BC^2+1/4AH^2

Cho tam giác ABC cân tại A có các đường cao AH và BK . CM \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • A B C H K

    Tam giác ABC cân ở A có đường cao AH=>BC=2CH

    Ta có:\(\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}=\dfrac{4AH^2+BC^2}{4BC^2AH^2}=\dfrac{4AH^2+\left(2CH\right)^2}{16S_{ABC}^2}=\dfrac{4\left(AH^2+CH^2\right)}{16S^2_{ABC}}\)

    Do AH vuông góc với BC nên theo pytago AH2+CH2=AC2

    =>\(\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}=\dfrac{4AC^2}{16S^2_{ABC}}=\dfrac{AC^2}{4\cdot\left(\dfrac{1}{2}AC\cdot BK\right)^2}=\dfrac{1}{BK^2}\left(ĐPCM\right)\)

      bởi nguyễn văn chính 28/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON