YOMEDIA
NONE

Chứng minh rằng 1/a^2+b^2+2+1/b^2+c^2+2+1/c^2+a^2+2≤34

Cho a,b, c là các số thực dương thỏa mãn a+b+c=3. CMR:

\(\dfrac{1}{a^2+b^2+2}+\dfrac{1}{b^2+c^2+2}+\dfrac{1}{c^2+a^2+2}\le\dfrac{3}{4}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(\dfrac{1}{a^2+b^2+2}+\dfrac{1}{b^2+c^2+2}+\dfrac{1}{c^2+a^2+2}\le\dfrac{3}{4}\)

    \(\Leftrightarrow\dfrac{a^2+b^2}{a^2+b^2+2}+\dfrac{b^2+c^2}{b^2+c^2+2}+\dfrac{c^2+a^2}{c^2+a^2+2}\ge\dfrac{3}{2}\)

    Áp dụng BĐT Cauchy-Schwarz ta có:

    \(VT\ge\dfrac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)

    \(\ge\dfrac{\sqrt{3\left(a^2b^2+b^2c^2+a^2c^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)

    \(\ge\dfrac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\)

    Cần chứng minh \(\dfrac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\ge\dfrac{3}{2}\)

    \(\Leftrightarrow\left(a+b+c\right)^2\ge0\) *luôn đúng*

      bởi Liệt Hiền Thảo Vy 21/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON