YOMEDIA
NONE

Chứng minh 1/căn(ab + a + 2) + 1/căn(bc + b + 2) + 1/căn(ac + c + 2)≤ 3/2

cho a, b, c > 0 thỏa abc=1

cm \(\frac{1}{\sqrt{ab+a+2}}\) +\(\frac{1}{\sqrt{bc+b+2}}\) +\(\frac{1}{\sqrt{ac+c+2}}\) \(\le\)\(\frac{3}{2}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Từ $abc=1$ suy ra tồn tại $x,y,z>0$ sao cho \((a,b,c)=\left(\frac{x}{y},\frac{y}{z},\frac{z}{x}\right)\)

    Bài toán chuyển về CMR:

    \(A=\sqrt{\frac{yz}{xy+xz+2yz}}+\sqrt{\frac{xz}{xy+yz+2xz}}+\sqrt{\frac{xy}{2xy+yz+xz}}\leq \frac{3}{4}\)

    Áp dụng BĐT AM-GM: \(\sqrt{\frac{yz}{xy+xz+2yz}}\leq \frac{yz}{xy+xz+2yz}+\frac{1}{4}\)

    Thiết lập tương tự... \(\Rightarrow A\leq \frac{xy}{2xy+yz+xz}+\frac{yz}{xy+2yz+xz}+\frac{xz}{xy+yz+2xz}+\frac{3}{4}\) $(1)$

    Áp dụng BĐT Cauchy-Schwarz:

    \(\frac{1}{\frac{xy+yz+xz}{3}}+\frac{1}{\frac{xy+yz+xz}{3}}+\frac{1}{\frac{xy+yz+xz}{3}}+\frac{1}{xy}\geq \frac{16}{2xy+yz+xz}\Rightarrow \frac{9xy}{xy+yz+xz}+1\geq \frac{16xy}{2xy+yz+xz}\)

    Thiết lập tương tự với các phân thức còn lại và công theo vế:

    \(\Rightarrow \frac{xy}{2xy+yz+xz}+\frac{yz}{xy+2yz+xz}+\frac{xz}{xy+yz+2xz}\leq \frac{12}{16}=\frac{3}{4}\) $(2)$

    Từ \((1),(2)\Rightarrow A\leq \frac{3}{2} (\text{đpcm})\).

    Dấu $=$ xảy ra khi $x=y=z$ hay $a=b=c=1$

      bởi Trần Văn 22/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON