YOMEDIA
NONE

Cho phương trình: \(\displaystyle {x^4} - 13{x^2} + m = 0\). Tìm các giá trị của \(\displaystyle m\) để phương trình có 4 nghiệm phân biệt.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Cho phương trình: \(\displaystyle {x^4} - 13{x^2} + m = 0\)     (1)

    Đặt \(\displaystyle {x^2} = t  \,(t \ge 0),\) ta có phương trình: \(\displaystyle {t^2} - 13t + m = 0\)  (2)

    \(\displaystyle \Delta  = 169 - 4m\)

    Phương trình (1) có 4 nghiệm phân biệt khi phương trình (2) có hai nghiệm \(\displaystyle t_1,t_2\) dương phân biệt. Khi đó:

    \(\begin{array}{l}
    \left\{ \begin{array}{l}
    \Delta = 169 - 4m > 0\\
    {t_1} + {t_2} = 13 > 0\\
    {t_1}.{t_2} = m > 0
    \end{array} \right.\\
    \Leftrightarrow \left\{ \begin{array}{l}
    m < \dfrac{{169}}{4}\\
    m > 0
    \end{array} \right. \Leftrightarrow 0 < m < \dfrac{{169}}{4}
    \end{array}\)

      bởi Lê Chí Thiện 19/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON