YOMEDIA
NONE

Bài 105 trang 23 sách bài tập toán 9 tập 1

Bài 105 (Sách bài tập trang 23)

Chứng minh các đẳng thức (với a, b không âm và \(a\ne b\))

a) \(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

b) \(\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\right)\left(\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2=1\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • a) Ta có:

    \(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}\)

    \(=\dfrac{\sqrt{a}+\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}-\dfrac{2b}{b-a}\)

    \(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

    \(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

    \(=\dfrac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

    \(=\dfrac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

    \(=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

    (với a, b không âm và a ≠b )

    Vế trái bằng vế phải nên đẳng thức được chứng minh.

    b) Ta có:

    \(\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)

    \(=\left(\dfrac{\sqrt{a^3}+\sqrt{b^3}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left[\dfrac{\sqrt{a}+\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right]^2\)

    \(=\left[\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a^2}-\sqrt{ab}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right]\left(\dfrac{1}{\sqrt{a}-\sqrt{b}}\right)^2\)

    \(=\left(\sqrt{a^2}-\sqrt{ab}+\sqrt{b^2}-\sqrt{ab}\right)\dfrac{1}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

    \(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=1\)

    (với a, b không âm và a ≠b )

    Vế trái bằng vế phải nên đẳng thức được chứng minh.

      bởi Nguyễn Kim Thảo 08/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON