YOMEDIA
NONE

Xét các số thực dương \(a,b\) thỏa mãn phương trình \({\log _2}\frac{{1 - ab}}{{a + b}} = 2ab + a + b - 3\). Tìm giá trị nhỏ nhất \({P_{\min }}\) của \(P = a + b\)

A. \({P_{\min }} =  - 1 + 2\sqrt 5 \)

B. \({P_{\min }} = 2 + \sqrt 5 \)

C. \({P_{\min }} =  - 1 + \sqrt 5 \)

D. \({P_{\min }} = 1 + 2\sqrt 5 \)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có:

    \(\begin{array}{l}{\log _2}\frac{{1 - ab}}{{a + b}} = 2ab + a + b - 3\\ \Leftrightarrow {\log _2}\left( {1 - ab} \right) - {\log _2}\left( {a + b} \right)\\ = a + b - 2\left( {1 - ab} \right) - 1\\ \Leftrightarrow {\log _2}\left( {1 - ab} \right) + 1 + 2\left( {1 - ab} \right)\\ = a + b + {\log _2}\left( {a + b} \right)\\ \Leftrightarrow {\log _2}\left( {1 - ab} \right) + {\log _2}2 + 2\left( {1 - ab} \right)\\ = {\log _2}\left( {a + b} \right) + \left( {a + b} \right)\\ \Leftrightarrow {\log _2}\left[ {2\left( {1 - ab} \right)} \right] + 2\left( {1 - ab} \right)\\ = {\log _2}\left( {a + b} \right) + \left( {a + b} \right)\,\,\,\,\,\left( * \right)\end{array}\)

    Xét hàm số \(f\left( t \right) = {\log _2}t + t\) trên \(\left( {0; + \infty } \right)\) ta có: 

    \(f'\left( t \right) = \frac{1}{{t\ln 2}} + 1 > 0,\forall t > 0\)

    Do đó hàm số \(f\left( t \right)\) đồng biến trên \(\left( {0; + \infty } \right)\).

    Do đó

    \(\begin{array}{l}\left( * \right) \Leftrightarrow f\left( {2\left( {1 - ab} \right)} \right) = f\left( {a + b} \right)\\ \Leftrightarrow 2\left( {1 - ab} \right) = a + b\\ \Leftrightarrow a + b + 2ab - 2 = 0\end{array}\)

    Theo bđt Cô si ta có:

    \(a + b \ge 2\sqrt {ab}  \Rightarrow ab \le {\left( {\frac{{a + b}}{2}} \right)^2}\)

    \(\begin{array}{l} \Rightarrow 0 = a + b + 2ab - 2\\ \le a + b + 2.{\left( {\frac{{a + b}}{2}} \right)^2} - 2\\ \Leftrightarrow 0 \le a + b + \frac{{{{\left( {a + b} \right)}^2}}}{2} - 2\\ \Rightarrow 0 \le P + \frac{{{P^2}}}{2} - 2\\ \Leftrightarrow {P^2} + 2P - 4 \ge 0\\ \Leftrightarrow \left[ \begin{array}{l}P \ge  - 1 + \sqrt 5 \\P \le  - 1 - \sqrt 5 \end{array} \right.\end{array}\) 

    Dễ thấy \(P = a + b > 0\) nên \(P \ge  - 1 + \sqrt 5 \)

    Vậy \({P_{\min }} =  - 1 + \sqrt 5 \) khi \(a = b = \frac{{ - 1 + \sqrt 5 }}{2}\).

    Đáp án C

      bởi Minh Hanh 10/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON