YOMEDIA
NONE

Xác định giá trị của tham số \(m\) để hàm số sau không có cực trị: \(y = \dfrac{{{x^2} + 2mx - 3}}{{x - m}}\).

Xác định giá trị của tham số \(m\) để hàm số sau không có cực trị: \(y = \dfrac{{{x^2} + 2mx - 3}}{{x - m}}\). 

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có: \(y = \dfrac{{{x^2} + 2mx - 3}}{{x - m}}\), TXĐ: \(D = \mathbb{R}\backslash \left\{ m \right\}\).

    \(y' = \dfrac{{(2x + 2m)(x - m) - ({x^2} + 2mx - 3)}}{{{{\left( {x - m} \right)}^2}}}\)\( = \dfrac{{2{x^2} - 2{m^2} - {x^2} - 2mx + 3}}{{{{\left( {x - m} \right)}^2}}}\)\( = \dfrac{{{x^2} - 2mx - 2{m^2} + 3}}{{{{\left( {x - m} \right)}^2}}}\)

    Hàm số không có cực trị nếu đạo hàm của nó không đổi dấu trên \(D\).

    Xét  \(g\left( x \right) = {x^2}-2mx-2{m^2} + 3\) là tam thức bậc hai hệ số \(a > 0\) nên nếu nó không đổi dấu với mọi \(x \ne m\) thì \(\Delta ' = {m^2} + 2{m^2} - 3 \le 0\)\( \Leftrightarrow 3{m^2} - 3 \le 0 \Leftrightarrow  - 1 \le m \le 1\).

    Khi \(-1 < m < 1\) thì phương trình \(g\left( x \right) = 0\) vô nghiệm hay \(y' = 0\) vô nghiệm và \(y'\; > 0\) với mọi \(x \ne m\). Khi đó, hàm số không có cực trị.

    Khi \(m = 1\) hoặc \(m =  - 1\), hàm số đã cho trở thành \(y = x + 3\) (với \(x \ne 1\)) hoặc \(y = x-3\) (với\(x \ne  - 1\)). Các hàm số này không có cực trị.

    Vậy hàm số đã cho không có cực trị khi \(-1 \le m \le 1\).

      bởi Nguyễn Minh Minh 03/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON