YOMEDIA
NONE

Viết phương trình mặt phẳng (P) chứa A, B biết A(1;0;0), B(0; -2;3), C(1;1;1)

Trong không gian với hệ tọa độ Oxyz cho tam giác ABC có A(1;0;0), B(0; -2;3), C(1;1;1). Phương trình mặt phẳng (P) chứa A, B sao cho khoảng cách từ C tới (P) là 2/căn3

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Gọi vector pháp tuyến của \((P)\)\((a,b,c)\)

    Ta có \((-1,-2,3)=\overrightarrow {AB}\perp \overrightarrow{n_P}\Rightarrow -a-2b+3c=0\) $(1)$

    Do mặt phẳng đi qua \(A\) nên nó có dạng:\(a(x-1)+by+cz=0\)

    Khoảng cách từ \(C\mapsto (P)\) là : \(d=\frac{|b+c|}{\sqrt{a^2+b^2+c^2}}=\frac{2}{\sqrt{3}}\)

    \(\Rightarrow 6bc=4a^2+b^2+c^2\) $(2)$

    Từ \((1),(2)\Rightarrow 6bc=4(2b-3c)^2+b^2+c^2\Leftrightarrow 17b^2+37c^2-54bc=0\)

    \(\Leftrightarrow (37c-17b)(c-b)=0\)

    TH1: \(b=c\Rightarrow a=3c-2b=b\)

    PTMP: \(b(x-1)+by+bz=0\Leftrightarrow x+y+z-1=0\)

    TH2: \(c=\frac{17b}{37}\Rightarrow a=3c-2b=\frac{-23}{37}b\)

    PTMP: \(-\frac{23}{37}b(x-1)+by+\frac{17}{37}bz=0\Leftrightarrow \frac{-23}{37}x+y+\frac{17}{37}z+\frac{23}{37}=0\)

      bởi Đức Thái 10/10/2018
    Like (1) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON