YOMEDIA
NONE

Tứ diện đều \(ABCD\) có cạnh bằng \(a\). Tập hợp các điểm \(M\) sao cho \(M{A^2} + M{B^2} + M{C^2} + M{D^2} = 2{a^2}\)

(A) Mặt cầu có tâm là trọng tâm của tam giác \(ABC\) và bán kính bằng \({{a\sqrt 2 } \over 2}\).

(B) Mặt cầu có tâm là trọng tâm của tứ diện và bán kính bằng \({{a\sqrt 2 } \over 4}\).

(C) Mặt cầu có tâm là trọng tâm của tứ diện và bán kính bằng \({{a\sqrt 2 } \over 2}\).

(D) Mặt cầu có tâm là trọng tâm của tam giác \(ABC\) và bán kính bằng \({{a\sqrt 2 } \over 4}\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi \(G\) là trọng tâm tứ diện \(ABCD, AA’\) là đường cao xuất phát từ \(A\) của tứ diện \(ABCD\). Ta có:

    \(\eqalign{
    & AA' = \sqrt {A{B^2} - BA{'^2}} \cr&= \sqrt {{a^2} - {{{a^2}} \over 3}} = {{a\sqrt 6 } \over 3} \cr 
    & \Rightarrow GA = GB = GC = GD = {3 \over 4}AA' \cr&= {{a\sqrt 6 } \over 4} \cr} \)

    Ta có:   \(M{A^2} + M{B^2} + M{C^2} + M{D^2} = 2{a^2}\)

    \(\eqalign{
    & \Leftrightarrow {\left( {\overrightarrow {GA} - \overrightarrow {GM} } \right)^2} + {\left( {\overrightarrow {GB} - \overrightarrow {GM} } \right)^2} \cr&+ {\left( {\overrightarrow {GC} - \overrightarrow {GM} } \right)^2} + {\left( {\overrightarrow {GD} - \overrightarrow {GM} } \right)^2} \cr&= 2{a^2} \cr 
    & \Leftrightarrow 4G{A^2} + 4G{M^2}\cr& - 2\overrightarrow {GM} \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} } \right) \cr&= 2{a^2} \cr 
    & \Leftrightarrow M{G^2} = {{{a^2}} \over 2} - G{A^2} = {{{a^2}} \over 8}\cr& \Rightarrow MG = {{a\sqrt 2 } \over 4} \cr} \)

    Tập hợp các điểm \(M\) là mặt cầu tâm \(G\) bán kính \({{a\sqrt 2 } \over 4}\) . Chọn (B).

      bởi Hoàng My 07/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON