YOMEDIA
NONE

Trong không gian với hệ tọa độ Oxyz, hãy viết phương trình mặt phẳng tiếp xúc với mặt cầu \({(x - 1)^2} + {y^2} + {(z + 2)^2} = 6\) đồng thời song song với hai đường thẳng \({d_1}:\dfrac{{x - 2}}{3} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{z}{{ - 1}},{d_2}:\dfrac{x}{1} = \dfrac{{y + 2}}{1} = \dfrac{{z - 2}}{{ - 1}}\) .

Theo dõi Vi phạm
ADSENSE

Trả lời (1)

  • Ta có: \(\left( S \right)\) có tâm \(I\left( {1;\;0;\; - 2} \right)\) và bán kính \(R = \sqrt 6 .\)

    \({d_1}\) có VTCP là: \(\overrightarrow {{u_1}}  = \left( {3; - 1; - 1} \right),\) \({d_2}\) có VTCP là: \(\overrightarrow {{u_2}}  = \left( {1;\;1; - 1} \right).\)

    Ta có: \(\left\{ \begin{array}{l}\left( P \right) \bot {d_1}\\\left( P \right) \bot {d_2}\end{array} \right. \Rightarrow \overrightarrow {{n_P}}  = \left[ {\overrightarrow {{u_1}} ,\;\overrightarrow {{u_2}} } \right] = \left( {2;\;2;\;4} \right) = 2\left( {1;\;1;\;2} \right).\)

    Khi đó ta có phương trình \(\left( P \right)\) có dạng: \(x + y + 2z + d = 0.\)

    Mặt phẳng \(\left( P \right)\) tiếp xúc với mặt cầu \(\left( S \right) \Rightarrow d\left( {I;\;\left( P \right)} \right) = R\)

    \(\begin{array}{l} \Leftrightarrow \dfrac{{\left| {1 + 0 + 2.\left( { - 2} \right) + d} \right|}}{{\sqrt {{1^2} + {1^2} + {2^2}} }} = \sqrt 6  \Leftrightarrow \left| { - 3 + d} \right| = 6 \Leftrightarrow \left[ \begin{array}{l} - 3 + d = 6\\ - 3 + d =  - 6\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}d = 9\\d =  - 3\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}\left( {{P_1}} \right):\;\;\;x + y + 2z + 9 = 0\\\left( {{P_2}} \right):\;\;x + y + 2z - 3 = 0\end{array} \right..\end{array}\)

      bởi Dang Tung 09/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
AANETWORK
OFF