YOMEDIA
NONE

Trong không gian với hệ tọa độ \(Oxyz\) cho ba đường thẳng \({d_1}:\left\{ \begin{array}{l}x = t\\y = 4 - t\\z = - 1 + 2t\end{array} \right.\), \({d_2}:\frac{x}{1} = \frac{{y - 2}}{{ - 3}} = \frac{z}{{ - 3}}\) và \({d_3}:\frac{{x + 1}}{5} = \frac{{y - 1}}{2} = \frac{{z + 1}}{1}.\) Gọi \(\Delta \) là đường thẳng cắt \({d_1},{d_2},{d_3}\) lần lượt tại các điểm \(A,B,C\) sao cho \(AB = BC\). Viết phương trình đường thẳng \(\Delta \)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Do \(d\) cắt \({d_1},{d_2},{d_3}\) lần lượt tại \(A,B,C\) nên \(A\left( {t;4 - t; - 1 + 2t} \right),B\left( {t';2 - 3t'; - 3t'} \right),C\left( { - 1 + 5t'';1 + 2t''; - 1 + t''} \right)\).

    Lại có \(AB = BC \Rightarrow B\) là trung điểm của \(AC\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_B} = \frac{{{x_A} + {x_C}}}{2}\\{y_B} = \frac{{{y_A} + {y_C}}}{2}\\{z_B} = \frac{{{z_A} + {z_C}}}{2}\end{array} \right.\)

    \( \Leftrightarrow \left\{ \begin{array}{l}t' = \frac{{t - 1 + 5t''}}{2}\\2 - 3t' = \frac{{4 - t + 1 + 2t''}}{2}\\ - 3t' = \frac{{ - 1 + 2t - 1 + t''}}{2}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}2t' = t + 5t'' - 1\\4 - 6t' = 5 - t + 2t''\\ - 6t' =  - 2 + 2t + t''\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}t = 1\\t' = 0\\t'' = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A\left( {1;3;1} \right)\\B\left( {0;2;0} \right)\\C\left( { - 1;1; - 1} \right)\end{array} \right.\)

    Đường thẳng \(d\) đi qua điểm \(B\left( {0;2;0} \right)\) và nhận \(\overrightarrow {BA}  = \left( {1;1;1} \right)\) làm VTCP nên \(d:\frac{x}{1} = \frac{{y - 2}}{1} = \frac{z}{1}\).

      bởi Nguyen Nhan 09/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON