YOMEDIA
NONE

Trong không gian với hệ tọa độ \(Oxyz\), cho \(A\left( { - 1;0;0} \right)\), \(B\left( {0;0;2} \right)\), \(C\left( {0; - 3;0} \right)\). Hãy tính bán kính mặt cầu ngoại tiếp tứ diện \(OABC\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Tứ diện \(OABC\) có \(OA,\,\,OB,\,\,OC\) đôi một vuông góc.

    Gọi \(M,\,\,N\) lần lượt là trung điểm của \(AB\) và \(OC\).

    Ta có \(\left\{ \begin{array}{l}OC \bot OA\\OC \bot OB\end{array} \right. \Rightarrow OC \bot \left( {OAB} \right)\).

    Qua \(M\) dựng đường thẳng song song với OC, qua \(N\) dựng đường thẳng song song với \(OM\). Hai đường thẳng này cắt nhau tại \(I\).

    \(\Delta OAB\) vuông tại \(O \Rightarrow M\) là tâm đường tròn ngoại tiếp \(\Delta OAB \Rightarrow IO = IA = IB\).

    \(I \in IN \Rightarrow IO = IC \Rightarrow IO = IA = IB = IC \Rightarrow I\) là tâm mặt cầu ngoại tiếp \(O.ABC\).

    Ta có: \(OA = 1,\,\,OB = 2,\,\,OC = 3\)\( \Rightarrow OM = \frac{1}{2}AB = \frac{1}{2}\sqrt {{1^2} + {2^2}}  = \frac{{\sqrt 5 }}{2}\).

    \(R = OI = \sqrt {I{M^2} + O{M^2}}  = \sqrt {\frac{9}{4} + \frac{5}{4}}  = \frac{{\sqrt {14} }}{2}\).

      bởi Lê Viết Khánh 07/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON