YOMEDIA
NONE

Trong hệ toạ độ \(Oxyz\), cho điểm \(M(2 ; 1 ; 0)\) và mặt phẳng \((α): x + 3y - z - 27 = 0\). Tìm toạ độ điểm \(M'\) đối xứng với \(M\) qua \((α)\).

Trong hệ toạ độ \(Oxyz\), cho điểm \(M(2 ; 1 ; 0)\) và mặt phẳng \((α): x + 3y - z - 27 = 0\). Tìm toạ độ điểm \(M'\) đối xứng với \(M\) qua \((α)\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi \(H\) là hình chiếu vuông góc của \(M\) lên mặt phẳng \((α)\) và \(M'\) là điểm đối xứng của \(M\) qua \((α)\) thì \(H\) là trung điểm của đoạn thẳng \(MM'\). Xét đường thẳng \(∆\) qua \(M\) và \(∆\) vuông góc với \((α)\).

    Phương trình \(∆\) đi qua M và nhận \({\overrightarrow n _{\left( \alpha  \right)}} = \left( {1;3; - 1} \right)\) là 1 VTCP có dạng:\(\left\{ \matrix{x = 2 + t \hfill \cr y = 1 + 3t \hfill \cr z = - t \hfill \cr} \right.\)

    Gọi \(H = \Delta  \cap \left( \alpha  \right) \Rightarrow H\left( {2 + t;1 + 3t; - t} \right)\)

    Thay tọa độ điểm H vào phương trình \((\alpha)\) ta được: \(2+t+3(1+3t)-(-t)-27=0\Rightarrow 11t=22 \Rightarrow t=2\)

    \(\Rightarrow H(4; 7; -2)\) 

    \(M\) và \(M'\) đối xứng nhau qua \((α)\) nên H là trung điểm của MM'

    \(\left\{ \begin{array}{l}
    {x_{M'}} = 2{x_H} - {x_M} = 6\\
    {y_{M'}} = 2{y_H} - {y_M} = 13\\
    {z_{M'}} = 2{z_H} - {z_M} = - 4
    \end{array} \right. \Rightarrow M'\left( {6;13; - 4} \right)\)

      bởi Lê Tường Vy 07/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON