YOMEDIA
NONE

Tính diện tích xung quanh của một hình nón tròn xoay ngoại tiếp tứ diện đều cạnh \(a\) là

A. \({S_{xq}} = \dfrac{{\pi {a^2}}}{3}.\)       

B. \({S_{xq}} = \dfrac{{\pi \sqrt 2 {a^2}}}{3}.\)

C. \({S_{xq}} = \dfrac{{\pi \sqrt 3 {a^2}}}{3}.\) 

D. \({S_{xq}} = \dfrac{{\pi \sqrt 3 {a^2}}}{6}.\) 

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Bán kính đáy của hình nón là: \(R = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}\)

    Chiều cao của hình nón là: \(h = \sqrt {{a^2} - {{\left( {\dfrac{{a\sqrt 3 }}{3}} \right)}^2}}  = \dfrac{{a\sqrt 6 }}{3}\)

    Diện tích xung quanh của hình nón là:

    \({S_{xq}} = \pi Rl = \pi \dfrac{{a\sqrt 3 }}{3}.a = \dfrac{{\pi {a^2}\sqrt 3 }}{3}\)

    Chọn A.

      bởi Nguyễn Lê Thảo Trang 06/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON