YOMEDIA
NONE

Tìm tọa độ đỉnh B, điểm M biết N(0;-2), đường thẳng AM: x+2y-2=0

Trong mặt phẳng Oxy cho hình vuông ABCD có M, N lần lượt là trung điểm của các cạnh BC, CD. Tìm tọa độ đỉnh B, điểm M biết N(0;-2), đường thẳng AM có phương trình x+2y-2=0 và cạnh hình vuông bằng 4

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi \(I=AM\cap BN\)\(\Delta BIM\) đồng dạng  \(\Delta ABM\)

    suy ra \(AM\perp BN\)  nên \(BN:-2x-y+c=0\) 

    \(N\left(0;-2\right)\Rightarrow c=-2\Rightarrow BN:2x-y-2=0\)

    Tọa độ điểm I là nghiệm hệ phương trình :

    \(\begin{cases}x+2y-2=0\\2x-y-2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=\frac{6}{5}\\y=\frac{2}{5}\end{cases}\) \(\Rightarrow I\left(\frac{6}{5};\frac{2}{5}\right)\)

    Từ \(\Delta ABM\) vuông : \(BI=\frac{AB.BM}{\sqrt{AB^2+BM^2}}=\frac{4}{\sqrt{5}}\)

    Tọa độ điểm \(B\left(x;y\right)\) thỏa mãn \(\begin{cases}B\in BN\\BI=\frac{4}{\sqrt{5}}\end{cases}\) \(\Rightarrow\begin{cases}2x-y-2=0\\\left(\frac{6}{5}-x\right)^2+\left(\frac{2}{5}-y\right)^2=\frac{16}{5}\end{cases}\)

    Giải hệ ta được \(\begin{cases}x=2\\y=2\end{cases}\) và \(\begin{cases}x=\frac{2}{5}\\y=\frac{-6}{5}\end{cases}\) Suy ra \(B\left(2;2\right)\)    Loại \(\left(\frac{2}{5};-\frac{6}{5}\right)\)

    Tọa đọ M(x;y) thỏa mãn \(\begin{cases}M\in AM\\IM=\sqrt{BM^2-BI^2}\end{cases}\)  \(\Rightarrow\begin{cases}x+2y-2=0\\\left(x-\frac{6}{5}\right)^2+\left(y-\frac{2}{5}\right)^2=\frac{4}{5}\end{cases}\)

    Giải hệ ta được : \(\begin{cases}x=2\\y=0\end{cases}\) và \(\begin{cases}x=\frac{2}{5}\\y=\frac{4}{5}\end{cases}\) suy ra \(M_1\left(2;0\right);M_2\left(\frac{2}{5};\frac{4}{5}\right)\)

      bởi Nguyen Linh 25/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON