YOMEDIA
NONE

Tìm m để tiếp tuyến của y=x^3-(m+2)x^2+(m-1)x tại điểm có x=1

Cho hàm số \(y=x^3-\left(m+2\right)x^2+\left(m-1\right)x+2m-1\left(1\right)\), với m là tham số thực. Tìm m để tiếp tuyến của đồ thị hàm số (1) tại điểm có hoành độ x = 1 và đường thẳng \(d:2x+y-1=0\) tạo với nhau 1 góc \(30^0\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có \(\overrightarrow{n}=\left(2;1\right)\) là vecto pháp tuyến của đường thẳng d

    \(y'=3x^2-2\left(m+2\right)x+m-1\Rightarrow y'\left(1\right)=3-2m-4+m-1=-m-2\)

    Gọi \(\Delta\) là tiếp tuyến của đồ thị hàm số (1) tại điểm có hoành độ bằng 1. Suy ra phương trình của  \(\Delta\) có dạng \(y=y'\left(1\right)\left(x-1\right)+y\left(1\right)\)

    Do đó \(\overrightarrow{n}=\left(m+2;1\right)\) là vecto pháp tuyến của  \(\Delta\)

    Theo đề bài ta có : \(\left|\cos\left(\overrightarrow{n_1.}\overrightarrow{n_2}\right)\right|=\cos30^0\Rightarrow\frac{\left|\overrightarrow{n_1.}\overrightarrow{n_2}\right|}{\left|\overrightarrow{n_1}\right|\left|\overrightarrow{n_2}\right|}=\frac{\sqrt{3}}{2}\)

                             \(\Leftrightarrow\frac{\left|2\left(m+2\right)+1\right|}{\sqrt{5}\sqrt{\left(m+2\right)^2+1}}=\frac{\sqrt{3}}{2}\)

                             \(\Leftrightarrow m^2+20m+25=0\)

                             \(\Leftrightarrow m=-10\pm5\sqrt{3}\)

     
     
      bởi Phạm Thiên Hương 26/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON