YOMEDIA
NONE

Tìm m để hàm số y=-2x+2+m căn(x^2-4x+5) có CĐ

Tìm m để hàm số \(y=-2x+2+m\sqrt{x^2-4x+5}\) có cực đại

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Hàm số xác định trên R

    Ta có : \(y'=-2+m\frac{x-2}{\sqrt{x^2-4x+5}};y''-\frac{m}{\left(x^2=4x+5\right)^{\frac{3}{2}}}\)

    - Nếu \(m=0\) thì \(y'=-2\) nên hàm số không có cực trị 

    \(m\ne0\) vì dấu của y'' chỉ phụ thuộc vào m nên để hàm có cực đại thì trước hết \(y"=0\Leftrightarrow m< 0\), khi đó hàm số có cực đại \(\Leftrightarrow\) phương trình y' = 0 có nghiệm

    Ta có : \(y'=0\Leftrightarrow2\sqrt{\left(x-2\right)^2+1}=m\left(x-2\right)\left(1\right)\)

    Đặt \(t=x-2\) thì (1) trở thành \(mt=2\sqrt{t^2+1}\) \(\Leftrightarrow\begin{cases}t\le0\\\left(m^2-4\right)t^2=1\end{cases}\)

                                                                           \(\Leftrightarrow\begin{cases}t\le0\\t^2=\frac{1}{m^2-4}\end{cases}\)

    \(\Leftrightarrow\left(3\right)\) có nghiệm \(m^2-4>0\Leftrightarrow m< -2\) (do m < 0)

    Vậy m < -2 thì hàm số có cực đại

      bởi Tran Bui Anh Tuan 21/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON