YOMEDIA
NONE

Tìm m để đồ thị hàm số y=(2x+1)/(x^2+m) có 3 đường tiệm cận

Với giá trị nào của m thì đồ thị hàm số \(y=\frac{2x+1}{x^{2}+m}\) có 3 đường tiệm cận

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Dễ thấy \(\mathop {\lim }\limits_{x \to  \pm \infty } \frac{{2x + 1}}{{{x^2} + m}} = 0\)

    Suy ra đồ thị hàm số luôn nhận đường thẳng \(y = 0\) làm tiệm cận ngang.

    Vậy đồ thị hàm số \(y = \frac{{2x + 1}}{{{x^2} + m}}\)có ba tiệm cận khi có hai tiệm cận đứng.

    Ta có: \(2x + 1 = 0 \Leftrightarrow x =  - \frac{1}{2}\)

    Do đó đồ thị hàm số có hai tiệm cận đứng khi và chỉ khi phương trình \({x^2} + m\) có hai nghiệm phân biệt khác \( - \frac{1}{2}\) hay:

    \(\left\{ \begin{array}{l}m < 0\\\frac{1}{4} + m \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 0\\m \ne  - \frac{1}{4}\end{array} \right.\)

     

      bởi thanh duy 03/09/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON