YOMEDIA
NONE

Tìm giá trị nhỏ nhất của biểu thức \(A = \sqrt {{{(x + 1)}^2} + {y^2} + 4} + \sqrt {{x^2} + {{(y + 1)}^2} + 1} ,\) \(\forall x,y.\)

Tìm giá trị nhỏ nhất của biểu thức  \(A = \sqrt {{{(x + 1)}^2} + {y^2} + 4}  + \sqrt {{x^2} + {{(y + 1)}^2} + 1} ,\)  \(\forall x,y.\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đặt \(\overrightarrow u  = \left( {x + 1;y;2} \right),\) \(\overrightarrow v  = \left( { - x; - y - 1;1} \right),\) ta có \(\overrightarrow u  + \overrightarrow v  = {\rm{ }}\left( {1; - 1{\rm{ }};3} \right).\)

    Áp dụng bất đẳng thức \(\left| {\overrightarrow u  + \overrightarrow v } \right| \le \left| {\overrightarrow u } \right| + \left| {\overrightarrow v } \right|,\) ta suy ra

    \(A = \sqrt {{{\left( {x + 1} \right)}^2} + {y^2} + 4}  + \sqrt {{x^2} + {{\left( {y + 1} \right)}^2} + 1} \)

    \(\ge \sqrt {11} .\)

    Dấu bằng xảy ra khi \(\overrightarrow u ,\overrightarrow v \) cùng hướng, nghĩa là

    \({{x + 1} \over { - x}} = {y \over { - y - 1}} = {2 \over 1} > 0 \Leftrightarrow \left\{ \matrix{  x =  - {1 \over 3} \hfill \cr  y =  - {2 \over 3}. \hfill \cr}  \right.\)

    Vậy A đạt giá trị nhỏ nhất bằng \(\sqrt {11} \) khi \(x =  - {1 \over 3},y =  - {2 \over 3}.\)

      bởi Nguyễn Thị Thu Huệ 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON