YOMEDIA
NONE

Tìm điểm M trên (C): y=(2x+1)/(x-1) để khoảng cách từ A và B đến tiếp tuyến của (C)

cho hàm số y=(2x+1)/(x-1) có đồ thị (C).Tìm các điểm M trên đồ thị (C) sao cho khoảng cách từ 2 điểm A(2;4) và B(-4;-2) đến tiếp tuyến của (C) tại M là bằng nhau.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Gọi tọa độ điểm $M$ thỏa mãn là \(M\left (a,\frac{2a+1}{a-1}\right)\) (\(a\neq 1\))

    Phương trình tiếp tuyến tại $M$:

    \(y=f'(a)(x-a)+f(a)=\frac{-3}{(a-1)^2}(x-a)+\frac{2a+1}{a-1}\)

    \(\Leftrightarrow \frac{-3x}{(a-1)^2}+\frac{2a^2+2a-1}{(a-1)^2}-y=0\)

    Khoảng cách từ $A$ và $B$ đến đường thẳng trên bằng nhau tương đương với:

    \(\left | \frac{-6}{(a-1)^2}+\frac{2a^2+2a-1}{(a-1)^2}-4 \right |=\left | \frac{12}{(a-1)^2}+\frac{2a^2+2a-1}{(a-1)^2}+2 \right |\)

    \(\Leftrightarrow |-2a^2+10a-11|=|4a^2-2a+13|\)

    TH1: \(-2a^2+10a-11=4a^2-2a+13\)

    \(\Leftrightarrow a^2-2a+2=0\) ( vô lý)

    TH2: \(-2a^2+10a-11=-4a^2+2a-13\)

    \(\Leftrightarrow a^2+4a+1=0\Leftrightarrow a=-2\pm \sqrt{3}\)

    Khi đó tọa độ điểm $M$ là \((-2+\sqrt{3},\frac{1-\sqrt{3}}{2});(-2-\sqrt{3}.\frac{1+\sqrt{3}}{2})\)

      bởi Nguyễn Hoàng 24/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON