YOMEDIA
NONE

Ta cho số tự nhiên \(n\) thỏa mãn \(C_n^0 + C_n^1 + C_n^2 = 11.\) Số hạng chứa \({x^7}\) trong khai triển của \({\left( {{x^3} - \dfrac{1}{{{x^2}}}} \right)^n}\) bằng:

A. \( - 4\)                   B. (9{x^2}               C. \( - 4{x^7}\)        D. \( - 12{x^7}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có: \(C_n^0 + C_n^1 + C_n^2 = 11{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {n \ge 2,{\mkern 1mu} {\mkern 1mu} n \in \mathbb{N}} \right)\)

    \(\begin{array}{*{20}{l}}{ \Leftrightarrow 1 + n + \dfrac{{n\left( {n - 1} \right)}}{2} = 11}\\{ \Leftrightarrow 2 + 2n + {n^2} - n = 22}\\{ \Leftrightarrow {n^2} + n - 20 = 0}\\{ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{n = 4{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {tm} \right)}\\{n = {\rm{\;}} - 5{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {ktm} \right)}\end{array}} \right.}\end{array}\)

    Khi đó ta có \({\left( {{x^3} - \dfrac{1}{{{x^2}}}} \right)^4} = \sum\limits_{k = 0}^4 {C_4^k{{\left( {{x^3}} \right)}^{4 - k}}{{\left( { - \dfrac{1}{{{x^2}}}} \right)}^k}} \) \( = \sum\limits_{k = 0}^4 {C_4^k{{\left( { - 1} \right)}^k}{x^{12 - 5k}}} {\mkern 1mu} {\mkern 1mu} \left( {0 \le k \le 4;{\mkern 1mu} {\mkern 1mu} k \in \mathbb{N}} \right)\).

    Để tìm số hạng chứa \({x^7}\) ta cho \(12 - 5k = 7 \Leftrightarrow k = 1{\mkern 1mu} {\mkern 1mu} \left( {tm} \right)\).

    Vậy số hạng chứa \({x^7}\) trong khai triển trên là \(C_4^1.{\left( { - 1} \right)^1}{x^7} = {\rm{\;}} - 4{x^7}\).

    Chọn C.

      bởi Bảo Lộc 11/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON