YOMEDIA
NONE

Số giá trị nguyên của tham số \(m\) nằm trong khoảng \(\left( {0;2020} \right)\) để phương trình sau \(\left| {\left| {x - 1} \right| - \left| {2019 - x} \right|} \right| = 2020 - m\) có nghiệm.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • +) Với \(x \le 1\) thì \(y = \left| {\left| {x - 1} \right| - \left| {2019 - x} \right|} \right| = \left| {\left( {1 - x} \right) - \left( {2019 - x} \right)} \right| = 2018\).

    +) Với \(x \ge 2019\) thì \(y = \left| {\left| {x - 1} \right| - \left| {2019 - x} \right|} \right| = \left| {\left( {x - 1} \right) - \left( {x - 2019} \right)} \right| = 2018\).

    +) Với \(1 < x < 2019\) thì:\(y = \left| {\left| {x - 1} \right| - \left| {2019 - x} \right|} \right| = \left| {x - 1 - 2019 + x} \right|\) \( = \left| {2x - 2020} \right| = \left\{ \begin{array}{l}2x - 2020\,\,\,\,\,khi\,\,1010 \le x < 2019\\ - 2x + 2020\,\,khi\,\,1 < x < 1010\end{array} \right.\)

    Do đó \(y = \left\{ \begin{array}{l}2018\,\,khi\,\,x \le 1\\ - 2x + 2020\,\,khi\,\,1 < x < 1010\\2x - 2020\,\,\,\,\,khi\,\,1010 \le x < 2019\\2018\,\,khi\,\,x \ge 2019\end{array} \right.\)

    Vẽ dáng đồ thị hàm số ta được:

     

    Từ hình vẽ ta thấy phương trình đã cho có nghiệm nếu đường thẳng \(y = 2020 - m\) cắt đồ thị hàm số trên tại ít nhất một điểm hay \(0 \le 2020 - m \le 2018 \Leftrightarrow 2 \le m \le 2020\)

    Mà \(m \in \left( {0;2020} \right)\) nên \(2 \le m < 2020 \Rightarrow m \in \left\{ {2;3;...;2019} \right\}\).

    Có \(\left( {2019 - 2} \right):1 + 1 = 2018\) giá trị của \(m\) thỏa mãn bài toán.

      bởi Hoàng Anh 16/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON