YOMEDIA
NONE

Một hình lập phương có dện tích mặt chéo bằng \({a^2}\sqrt 2 \). Gọi \(V\) là thể tích khối cầu và \(S\) là diện tích mặt cầu ngoại tiếp hình lập phương nói trên. Cho biết tích \(S.V\) bằng

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi hình lập phương \(ABCD.A'B'C'D'\) cạnh \(x\) có diện tích mặt chéo \({S_{ACC'A'}} = {a^2}\sqrt 2 \)

    Ta có \(AC = \sqrt {A{D^2} + D{C^2}}  = x\sqrt 2 \)  nên \({S_{ACC'A'}} = AC.AA' = x\sqrt 2 .x = {a^2}\sqrt 2  \Rightarrow x = a\)

    Bán kính mặt cầu ngoại tiếp hình lập phương là \(R = \frac{{a\sqrt 3 }}{2}\)

    Nên thể tích khối cầu ngoại tiếp hình lập phương là \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {\left( {\frac{{a\sqrt 3 }}{2}} \right)^3} = \frac{{\sqrt 3 \pi {a^3}}}{2}\)

    Diện tích mặt cầu ngoại tiếp hình lập phương là \(S = 4\pi {R^2} = 4\pi .{\left( {\frac{{a\sqrt 3 }}{2}} \right)^2} = 3\pi {a^2}\)

    Suy ra \(S.V = 3\pi {a^3}.\frac{{\sqrt 3 }}{2}\pi {a^3} = \frac{{3\sqrt 3 }}{2}{\pi ^2}{a^5}\)

      bởi Lê Tấn Vũ 09/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON