YOMEDIA
NONE

Khối chóp S.ABCD có đáy là hình bình hành. Gọi B’, D’ lần lượt là trung điểm của SB, SD. Mặt phẳng \(\left( {AB'D'} \right)\) cắt SC tại C’. Tìm tỉ số thể tích của hai khối chóp S.AB’C’D’ và S.ABCD.

Khối chóp S.ABCD có đáy là hình bình hành. Gọi B’, D’ lần lượt là trung điểm của SB, SD. Mặt phẳng \(\left( {AB'D'} \right)\) cắt SC tại C’. Tìm tỉ số thể tích của hai khối chóp S.AB’C’D’ và S.ABCD.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Dễ thấy \(AC',B'D'\) và \(SO\left( {O = AC \cap BD} \right)\) đồng  quy tại \(I\) và \(I\) là trung điểm của SO.

    Kẻ \(OC''//AC'.\) Dễ thấy \(SC' = C'C'' = C''C.\)

    Vậy \({{SC'} \over {SC}} = {1 \over 3}.\) Ta có

    \(\eqalign{  & {{{V_{S.AB'C'}}} \over {{V_{S.ABC}}}} = {{SB'} \over {SB}}.{{SC'} \over {SC}} = {1 \over 2}.{1 \over 3} = {1 \over 6}  \cr  &  \Rightarrow {{{V_{S.AB'C'}}} \over {{V_{S.ABCD}}}} = {1 \over {12}}. \cr} \)

    Chứng minh tương tự, ta cũng có :

    \({{{V_{S.AC'D'}}} \over {{V_{S.ABCD}}}} = {1 \over {12}}.\)

    Vậy \({{{V_{S.AB'C'D'}}} \over {{V_{S.ABCD}}}} = {{{V_{S.AB'C'}} + {V_{S.AC'D'}}} \over {{V_{S.ABCD}}}} = {1 \over 6}.\)

      bởi Van Dung 07/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON