YOMEDIA
NONE

Khảo sát sự biến thiên và vẽ đồ thị của hàm số \(y = {x^3} + 3{x^2} - 4\).

Khảo sát sự biến thiên và vẽ đồ thị của hàm số \(y = {x^3} + 3{x^2} - 4\). 

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Tập xác đinh: \(D=\mathbb R\)

    Sự biến thiên:

    \(\eqalign{
    & y' = 3{x^2} + 6x \cr 
    & y' = 0 \Leftrightarrow \left[ \matrix{
    x = 0 \hfill \cr 
    x = - 2 \hfill \cr} \right. \cr} \)

    - Hàm số đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( {0; + \infty } \right)\)

    - Hàm số nghịch biến trên khoảng \((-2;0)\)

    - Cực trị:

      Hàm số đạt cực đại tại \(x=-2\;;y_{CĐ}=0\)

      Hàm số đạt cực tiểu tại \(x=0\;;y_{CT}=-4\)

    - Giới hạn:

    \(\eqalign{
    & \mathop {\lim }\limits_{x \to + \infty } \left( {{x^3} + 3{x^2} - 4} \right) = + \infty \cr 
    & \mathop {\lim }\limits_{x \to - \infty } \left( {{x^3} + 3{x^2} - 4} \right) = - \infty \cr} \)

    \(\eqalign{
    & y'' = 6x + 6 \cr 
    & y'' = 0 \Leftrightarrow x = - 1 \cr} \)

    Điểm uốn \(I(-1;-2)\)

    - Bảng biến thiên:

    Đồ thị:

    Đồ thị hàm số nhận điiểm \(I(-1;-2)\) làm tâm đối xứng.

      bởi thùy trang 02/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON