YOMEDIA
NONE

Hãy tìm hệ số của số hạng chứa \({{\rm{x}}^{26}}\) trong khai triển nhị thức Newton của \({\left( {\frac{1}{{{x^4}}} - 2{{\rm{x}}^7}} \right)^n}\) biết rằng: \(C_{2n + 1}^{n + 1} + C_{2n + 1}^{n + 2} + ... + C_{2n + 1}^{2n} = {2^{20}} - 1\) (n nguyên dương).

A. 13440        B. -13440

C. 210            D. -120

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có \(C_{2n + 1}^{n + 1} + C_{2n + 1}^{n + 2} + ... + C_{2n + 1}^{2n} = {2^{20}} - 1\)

    \(\begin{array}{l} \Leftrightarrow C_{2n + 1}^{n + 1} + C_{2n + 1}^{n + 2} + ... + C_{2n + 1}^{2n} + C_{2n + 1}^{2n + 1} = {2^{20}}\\ \Leftrightarrow \frac{{{2^{2n + 1}}}}{2} = {2^{20}}\\ \Rightarrow n = 10\end{array}\)

    Khi đó \({\left( {\frac{1}{{{x^4}}} - 2{x^7}} \right)^n} = {\left( {\frac{1}{{{x^4}}} - 2{x^7}} \right)^{10}} = \sum\limits_{k \to 0}^{10} {C_{10}^k} .{\left( {\frac{1}{{{x^4}}}} \right)^k}.{\left( {2{x^7}} \right)^{10 - k}}\)

    \( \Rightarrow {\left( {\frac{1}{{{x^4}}} - 2{x^7}} \right)^n} = \sum {C_{10}^k{{.2}^{10 - k}}.{x^{70 - 11k}}} \)

    Số hạng chứa \({x^{26}}\) là \(70 - 11k = 26 \Rightarrow k = 4\)

    Hệ số của số hạng chứa \({x^{26}}\) là \(C_{10}^4{.2^{10 - 4}} = 13440\)

    Chọn A.

      bởi Minh Hanh 11/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON